
z/OS

MVS Programming: Extended
Addressability Guide

SA22-7614-02

IBM

z/OS

MVS Programming: Extended
Addressability Guide

SA22-7614-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page B-1.

Third Edition, March 2002

This is a major revision of SA22-7614-01.

This edition applies to Version 1 Release 3 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

Tables . xi

About This Book . xiii
Who Should Use This Book . xiii
How This Book Is Organized . xiii
How to Use This Book . xiv
Where to Find More Information xiv

Accessing licensed books on the Web xiv
Using LookAt to look up message explanations xv

Summary of changes . xvii

Chapter 1. An Introduction to Extended Addressability 1-1
Basic Concepts . 1-3

Asynchronous Cross Memory Communication 1-3
Synchronous Cross Memory Communication 1-4
Access Register ASC Mode 1-4
Data-in-Virtual . 1-5
Virtual Lookaside Facility . 1-5
Data Spaces and Hiperspaces 1-6

Basic Decision: Data Space or Hiperspace 1-6
What Can a Program Do With a Data Space or a Hiperspace? 1-7
What are the Differences? 1-8
Which One Should Your Program Use? 1-9
Choosing VIO Instead of a Data Space or a Hiperspace 1-11

Chapter 2. Linkage Stack . 2-1
Linkage Stack Considerations for Asynchronous Exit Routines 2-2
Instructions that Add and Remove a Linkage Stack Entry 2-2

Branch and Stack (BAKR) Instruction 2-3
Program Return (PR) Instruction 2-3
Example of Using the Linkage Stack 2-4

Contents of the Linkage Stack Entry. 2-4
Instructions that Manipulate the Contents of a Linkage Stack Entry 2-5

Extract Stacked Registers (EREG) Instruction 2-5
Extract Stacked State (ESTA) Instruction 2-5
Modify Stacked State (MSTA) Instruction 2-7

Expanding a Linkage Stack to a Specified Size. 2-7
Relationship Between the Linkage Stack and ESTAE-type Recovery Routines 2-8
Dumping the Contents of the Linkage Stack 2-8

Chapter 3. Synchronous Cross Memory Communication 3-1
When Should You Use Synchronous Cross Memory Communication? 3-1
Terminology, Macros, and Assembler Instructions 3-2

Cross Memory Terminology 3-2
Macros Used for Synchronous Cross Memory Communication 3-3
Instructions Used for Cross Memory Communication. 3-4

An Overview of Cross Memory Communication. 3-5
PC Routines . 3-5
Summary of Cross Memory Communication 3-8

The Cross Memory Environment 3-9

© Copyright IBM Corp. 1988, 2002 iii

Entry Tables . 3-9
Linkage Tables. 3-9
The PC Number. 3-10
Program Authorization - PKM (PSW Key Mask) 3-10
Address Space Authorization 3-11

Considerations Before Using Cross Memory 3-13
Environmental Considerations 3-13
Restrictions . 3-14
Requirements . 3-14

Establishing Cross Memory Communication 3-14
Making a PC Routine Available to All Address Spaces. 3-15
Making a PC Routine Available to Selected Address Spaces 3-16

Examples of How to Establish a Cross Memory Environment 3-18
Example 1 - Making Services Available to Selected Address Spaces . . . 3-19
Example 2 - Making Services Available to All Address Spaces. 3-26
Example 3 - Providing Non-Space Switch Services 3-28

PC Linkages and PC Routine Characteristics 3-28
PC Linkage Capabilities . 3-29
Defining a PC Routine . 3-29
PC Routine Requirements 3-32
Linkage Conventions . 3-32

Resource Management . 3-37
Reusing ASIDs . 3-38
Reusing LXs . 3-40
Reusing AXs and EAXs . 3-40
PC Routine Loading Recommendations 3-40
Accounting Considerations 3-41
Recovery Considerations 3-41

Chapter 4. Using the 64-bit Address Space 4-1
What is the 64-bit Address Space? 4-1
Why Would You Use Virtual Storage above the Bar?. 4-2
Limiting the Use of Memory Objects 4-2
Memory Objects . 4-5
Using Assembler Instructions in the 64-bit Address Space 4-5

64-bit Binary Operations . 4-6
64-bit Addressing Mode (AMODE) 4-8

IARV64 Services . 4-11
Protecting Storage above the Bar 4-12
Relationship Between the Memory Object and Its Owner. 4-12
Creating Memory Objects 4-13
Using a Memory Object . 4-14

Fixing the Pages of a Memory Object 4-16
Example of Fixing Pages of a Memory Object 4-17

Discarding Data in a Memory Object 4-17
Releasing the Physical Resources that Back Pages of Memory Objects 4-18
Freeing a Memory Object . 4-18

Example of Freeing a Memory Object 4-19
Creating a Guard Area and Changing its Size 4-19

Example of Creating a Memory Object with a Guard Area 4-20
Listing Information About the Use of Virtual Storage Above the Bar 4-20
An Example of Creating, Using, and Freeing a Memory Object 4-21

Chapter 5. Using Access Registers 5-1
Using Access Registers for Data Reference 5-1

A Comparison of Data Reference in Primary and AR Mode 5-4

iv z/OS V1R3.0 MVS Extended Addressability Guide

Coding Instructions in AR Mode 5-5
Manipulating the Contents of ARs. 5-6
Access Lists . 5-7

Types of Access Lists . 5-7
Types of Access List Entries 5-11

Special ALET Values . 5-12
Special ALET Values at a Space Switch 5-13
Loading the Value of Zero into an AR 5-13

The ALESERV Macro. 5-14
Setting Up Addressability to an Address/Data Space 5-15

Adding an Entry to an Access List 5-15
Example of Adding an Access List Entry for a Data Space 5-16
Example of Adding an Access List Entry for an Address Space 5-17
Obtaining and Passing ALETs and STOKENs 5-18
Examples of Establishing Addressability to Data Spaces 5-19
Adding an Entry for the Primary Address Space to the DU-AL 5-22
Using the ALET for the Home Address Space 5-23

Deleting an Entry from an Access List. 5-24
Example of Deleting a Data Space Entry from an Access List 5-24
Example of Deleting an Address Space Entry from an Access List 5-25
ALET Reuse by the System 5-25

EAX-Authority to an Address Space 5-25
Setting the EAX Value . 5-28
Procedures for Establishing Addressability to an Address Space 5-30
Changing an EAX Value. 5-31
Freeing an EAX Value . 5-31
Checking the Authority of Callers 5-31

Obtaining Storage Outside the Primary Address Space 5-33
What Access Lists Can an Asynchronous Exit Routine Use? 5-35
Issuing MVS Macros in AR Mode 5-35

Passing Parameters to MVS Macros in AR Mode 5-37
Formatting and Displaying AR Information 5-37

Chapter 6. Creating and Using Data Spaces 6-1
Referencing Data in a Data Space 6-2
Relationship Between the Data Space and its Owner 6-2

SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces 6-3
Rules for Creating, Deleting, and Using Data Spaces 6-3

Example of the Rules for Accessing Data Spaces 6-4
Summary of Rules for Creating, Deleting, and Using Data Spaces. 6-6

Creating a Data Space. 6-8
Choosing the Name of the Data Space. 6-9
Specifying the Size of the Data Space 6-9
Identifying the Origin of the Data Space 6-11
Example of Creating a Data Space 6-11
Protecting Data Space Storage 6-12
Creating a Data Space of DREF Storage 6-13

Establishing Addressability to a Data Space 6-13
Example of Establishing Addressability to a Data Space 6-14

Managing Data Space Storage 6-14
Managing Data Space Storage Across a Checkpoint/Restart Operation . . . 6-14
Limiting Data Space Use . 6-15
Serializing Use of Data Space Storage 6-15
Examples of Moving Data into and out of a Data Space 6-15

Using Callable Cell Pool Services to Manage Data Space Areas 6-17
Extending the Current Size of a Data Space 6-19

Contents v

Deleting a Data Space . 6-20
Example of Creating, Using, and Deleting a Data Space 6-21
Creating and Using SCOPE=COMMON Data Spaces 6-22
Attaching a Subtask and Sharing Data Spaces with It 6-24

Sharing Data Spaces among Problem State Programs with PSW
Key 8 - F . 6-25

Mapping a Data-in-Virtual Object to a Data Space 6-26
Paging Data Space Storage Areas into and out of Central Storage 6-28

Releasing Data Space Storage 6-29
How SRBs Use Data Spaces 6-29

Obtaining the TCB Identifier for a Task (TTOKEN) 6-32
Example of an SRB Routine Using a Data Space 6-32

Dumping Storage in a Data Space 6-35
Using Data Spaces Efficiently 6-35

Chapter 7. Creating and Using Hiperspaces 7-1
Managing Hiperspace Storage 7-2

Limiting Hiperspace Use . 7-2
Managing Hiperspace Storage Across a Checkpoint/Restart Operation 7-2
Relationship Between the Hiperspace and Its Owner. 7-3
Serializing Use of Hiperspace Storage 7-3
Standard and Expanded Storage Only Hiperspaces 7-4

Standard Hiperspaces . 7-4
Expanded Storage Only Hiperspaces 7-5
Summary of the Differences 7-5

Rules for Creating, Deleting, and Using Hiperspaces. 7-6
Creating a Hiperspace . 7-7

Choosing the Name of the Hiperspace 7-8
Specifying the Size of the Hiperspace 7-9
Protecting Hiperspace Storage 7-10
Identifying the Origin of the Hiperspace 7-11
Creating a Non-Shared or Shared Standard Hiperspace 7-11
Creating an Expanded Storage Only Hiperspace. 7-12

Accessing Hiperspaces . 7-12
How Problem State Programs with PSW Key 8 - F Use Hiperspaces 7-13
How Supervisor State or PSW Key 0 - 7 Programs Use Hiperspaces 7-16
Obtaining an ALET for a Hiperspace 7-18

Transferring Data To and From Hiperspaces 7-20
Read and Write Operations for Standard Hiperspaces 7-21
Read and Write Operations For Expanded Storage Only Hiperspaces 7-24
Obtaining Improved Data Transfer To and From a Hiperspace 7-25

Extending the Current Size of a Hiperspace 7-37
Deleting a Hiperspace . 7-38
Releasing Hiperspace Storage 7-38
Using Data-in-Virtual with Standard Hiperspaces. 7-39

Mapping a Data-in-Virtual Object to a Hiperspace 7-41
Using a Hiperspace as a Data-in-Virtual Object 7-42

How SRBs Use Hiperspaces 7-44

Chapter 8. Creating Address Spaces 8-1
Using the ASCRE Macro to Create an Address Space 8-1

Planning the Characteristics of the Address Space 8-3
Identifying a Procedure in SYS1.PROCLIB 8-3
The Address Space Initialization Routine 8-4
Writing an Initialization Routine. 8-5
Establishing Cross Memory Linkages 8-6

vi z/OS V1R3.0 MVS Extended Addressability Guide

Passing a Parameter List to the New Address Space 8-10
Providing an Address Space Termination Routine 8-10
Establishing Attributes for Address Spaces 8-11

Deleting an Address Space 8-12
Example of Creating and Deleting an Address Space 8-12

Chapter 9. Creating and Using Subspaces 9-1
What Is a Subspace? . 9-1
Deciding Whether Your Program Should Run in a Subspace 9-4

Benefits of Subspaces . 9-4
Limitations of Subspaces . 9-5
System Storage Requirements 9-5

Steps to Manage Subspaces 9-5
Updating the Application Server To Use Subspaces 9-6

Managing Subspaces when Performance Is a Priority 9-7
Managing Subspaces when Storage Is a Priority 9-7
Creating a Single Subspace 9-7
Determining Whether Subspaces Are Available on Your System 9-8
Obtaining Storage for Subspaces 9-8
Making a Range of Storage Eligible to Be Assigned to a Subspace 9-10
Creating the Subspaces . 9-12
Establishing Addressability to a Subspace 9-13
Assigning Storage to the Subspaces 9-14
Branching to a Subspace 9-15
Running a Program in a Subspace 9-16
Disassociating Storage from the Subspaces 9-17
Removing the Subspace Entry from the DU-AL 9-18
Deleting the Subspace . 9-18
Making Storage Ineligible to Be Assigned to a Subspace. 9-18
Releasing Storage . 9-19

Example of Managing Subspaces 9-20
Planning for Recovery in a Subspace Environment 9-21

Planning for SPIE and ESPIE Routines 9-22
Planning for ESTAE-Type Recovery Routines and FRRs 9-22

Diagnosing Errors in a Subspace Environment 9-23
Diagnosing 0C4 ABENDs 9-23
Using IPCS to Diagnose Program Errors in a Subspace 9-24
RSM Component Trace . 9-24
Requesting a Dump . 9-24

Appendix. Accessibility . A-1
Using assistive technologies A-1
Keyboard navigation of the user interface. A-1

Notices . B-1
Programming Interface Information B-2
Trademarks. B-2

Glossary . C-1

Index . X-1

Contents vii

viii z/OS V1R3.0 MVS Extended Addressability Guide

Figures

1-1. Accessing Data in a Data Space . 1-8
1-2. Accessing Data in a Hiperspace . 1-9
2-1. Example of the BAKR Instruction . 2-3
2-2. Example of Using the Linkage Stack . 2-4
2-3. Example of an EREG Instruction . 2-5
2-4. Format of the Information Fields . 2-6
2-5. Example of an ESTA Instruction . 2-6
2-6. Example of an MSTA Instruction. 2-7
3-1. PC Routine Invocation . 3-7
3-2. Accessing Data Through the MVCP and MVCS Instructions 3-8
3-3. PC Instruction Execution Environment . 3-12
3-4. PT and SSAR Instruction Execution Environment 3-13
3-5. Required Macros to Make PC Routines Available to All Users 3-15
3-6. Required Macros to Make PC Routines Available to Selected Address Spaces 3-17
3-7. Declared Storage for Cross Memory Examples 3-19
3-8. Using ETDEF to Statically Define Entry Table Descriptors 3-21
3-9. Using ETDEF to Dynamically Define Entry Table Descriptors 3-22
3-10. Linkage Table and Entry Table Connection 3-24
3-11. Calling Sequence for a Stacking PC Routine. 3-25
3-12. Calling Sequence for a Basic PC Routine . 3-25
3-13. Linkage and Entry Tables for a Global Service 3-28
3-14. Comparing Basic and Stacking PC Linkage Conventions 3-37
3-15. Cross Memory Connections between Address Spaces 3-39
4-1. z/OS R2 Address Space . 4-2
4-2. How the System Chooses which MEMLIMIT Applies 4-4
5-1. Example of an AR/GPR . 5-3
5-2. Using an ALET to Identify an Address/Data Space 5-3
5-3. The MVC Instruction in Primary Mode . 5-4
5-4. The MVC Instruction in AR Mode . 5-5
5-5. Comparison of Addressability through a PASN-AL and a DU-AL 5-10
5-6. PASN-ALs and DU-ALs at a Space Switch 5-11
5-7. Special ALET Values . 5-12
5-8. Example 1: Adding an Entry to a DU-AL . 5-19
5-9. Example 1: Sharing a Data Space through DU-ALs 5-20
5-10. Example 2: Adding an Entry to a PASN-AL 5-21
5-11. Example 2: Sharing a Data Space through the PASN-AL 5-21
5-12. Example 3: Sharing Data Spaces Between Two Address Spaces 5-22
5-13. Obtaining the ALET for the Primary Address Space 5-23
5-14. Using the ALET for the Home Address Space 5-24
5-15. Difference Between Public and Private Entries 5-27
5-16. Comparison of an AX and an EAX . 5-29
5-17. Checking the Validity of an ALET . 5-32
6-1. Example of Rules for Accessing Data Spaces 6-6
6-2. Example of Specifying the Size of a Data Space 6-11
6-3. Protecting Storage in a Data Space . 6-13
6-4. Example of Using Callable Cell Pool Services for Data Spaces 6-19
6-5. Example of Extending the Current Size of a Data Space 6-20
6-6. Example of Using a SCOPE=COMMON Data Space. 6-23
6-7. Two Programs Sharing a SCOPE=SINGLE Data Space 6-25
6-8. Example of Mapping a Data-in-Virtual Object to a Data Space 6-27
6-9. Scheduling an SRB with an Empty DU-AL and in a Non-Cross Memory Environment 6-30
6-10. Scheduling an SRB with a Copy of the Scheduling Program’s DU-AL and in the Same Cross

Memory Environment . 6-31

© Copyright IBM Corp. 1988, 2002 ix

7-1. Example of Scrolling through a Standard Hiperspace 7-4
7-2. Example of Specifying the Size of a Hiperspace 7-10
7-3. Protecting Storage in a Hiperspace . 7-11
7-4. A Problem State Program Using a Non-shared Standard Hiperspace 7-14
7-5. Example 1: An Unauthorized Program Using a Standard Hiperspace 7-15
7-6. Example 2: An Unauthorized Program Using a Standard Hiperspace 7-16
7-7. A Supervisor State Program Using a Non-Shared Standard Hiperspace 7-17
7-8. A Supervisor State Program Using a Shared Standard Hiperspace 7-18
7-9. Illustration of the HSPSERV Write and Read Operations 7-21
7-10. Example of Creating a Standard Hiperspace and Transferring Data 7-23
7-11. Gaining Fast Data Transfer To and From Expanded Storage 7-26
7-12. Example of Extending the Current Size of a Hiperspace 7-38
7-13. Example of Mapping a Data-in-Virtual Object to a Hiperspace 7-41
7-14. A Standard Hiperspace as a Data-in-Virtual Object 7-43
8-1. Synchronization of the Address Space Creation Process 8-6
8-2. An Example of a Cross Memory Environment 8-7
8-3. An Example of Cross Memory Environment Set by the ASCRE Macro. 8-8
8-4. The Cross Memory Linkages Set by the ASCRE Macro. 8-10
9-1. Illustration of Address Space that Owns One Subspace 9-2
9-2. Illustration of Address Space that Owns Two Subspaces 9-3
9-3. Illustration of the Range List . 9-11
9-4. Illustration of GPR Contents in Event of Range List Error 9-12

x z/OS V1R3.0 MVS Extended Addressability Guide

Tables

1-1. Data Requirements for VIO, Data Spaces, and Hiperspaces 1-11
1-2. Difficulty of Modifying an Existing Application 1-12
4-1. IARV64 Services and Rules for What Programs Do with Memory Objects 4-11
4-2. Comparing Tasks and Concepts: Below the Bar and Above the Bar 4-15
5-1. Base and Index Register Addressing in AR Mode 5-5
5-2. Functions of the ALESERV Macro . 5-14
5-3. Relationship Between the CHKEAX and ACCESS Parameters on ALESERV 5-26
6-1. Creating, Deleting, and Using Data Spaces 6-7
6-2. Requirements for Authorized Programs using the DIV Services with Data Spaces 6-27
6-3. Addressability for Each Type of Invocation of the SCHEDULE Macro. 6-31
7-1. Comparison of Standard and ESO Hiperspaces 7-5
7-2. Creating, Deleting, and Using Hiperspaces . 7-6
7-3. What Hiperspaces can Problem State Programs with PSW 8 - F Access? 7-16
7-4. What Hiperspaces can Supervisor State or PSW Key 0 - 7 Programs Use? 7-16
7-5. Rules for Adding Access List Entries for Hiperspaces 7-19
7-6. Uses of Hiperspaces and Data-in-Virtual . 7-39
7-7. Requirements for Authorized Programs using the DIV Services with Hiperspaces 7-40
8-1. Planning Considerations for the New Address Space 8-3
8-2. ATTR Options for Address Spaces . 8-11
9-1. System Storage Requirements When Managing Subspaces 9-5
9-2. Steps for Creating, Using, and Deleting Subspaces. 9-5
9-3. Storage Attributes Required for Subspaces . 9-9

© Copyright IBM Corp. 1988, 2002 xi

xii z/OS V1R3.0 MVS Extended Addressability Guide

About This Book

This book is intended for the programmer who writes programs with needs that
extend beyond the boundaries of the address space in which the programs are
dispatched. Specifically, the programs need to do one or more of the following:

v Execute in a multi-address space environment, interacting with programs running
in other address spaces

v Use data in address spaces other than the primary

v Use data in data spaces and hiperspaces

v Create another address space.

Who Should Use This Book
This book is intended for programmers who write programs that interact with MVS
or with subsystems. The programs must be in supervisor state, or PSW key 0 - 7,
or reside in APF-authorized libraries, except where otherwise noted. The book
assumes that the reader understands system concepts and writes programs in
assembler language.

Assembler language programming is described in the following books:
v HLASM Programmer’s Guide
v HLASM Language Reference

Using this book also requires you to be familiar with the operating system and the
services that programs running under it can invoke.

How This Book Is Organized
This book is organized as follows:

v Chapter 1, “An Introduction to Extended Addressability” describes the concepts
behind a multiple-address environment in which the functions described in the
book would be appropriate. It describes the reasons why a programmer might
want to extend the addressability of a program beyond the boundaries of a
program’s primary address space. It also compares two kinds of data-only
spaces: data spaces and hiperspaces.

v Chapter 2, “Linkage Stack” describes an area that the system provides a
program to save status information at a branch or a program call instruction. This
chapter describes the linkage stack and the assembler instructions that cause the
system to add and remove an entry and use the entry.

v Chapter 3, “Synchronous Cross Memory Communication” describes cross
memory functions.

v Chapter 4, “Using the 64-bit Address Space” describes how a program can use
the address space virtual storage above the 2-gigabyte address. The chapter
describes the rules for creating, freeing, and using those virtual storage areas.

v Chapter 5, “Using Access Registers” describes how a program can use the
registers known as “access registers” to access data in address spaces and data
spaces.

v Chapter 6, “Creating and Using Data Spaces” describes how a program can ask
the system for an area of virtual storage known as a “data space”. The chapter
describes the rules for creating, deleting, and using data spaces.

© Copyright IBM Corp. 1988, 2002 xiii

v Chapter 7, “Creating and Using Hiperspaces” describes how a program can ask
the system for an area of virtual storage known as a “hiperspace”. The chapter
describes the rules for creating, deleting, and using hiperspaces.

v Chapter 8, “Creating Address Spaces” describes how a program can use the
ASCRE macro to create an address space.

v Chapter 9, “Creating and Using Subspaces” describes how a program can use
subspaces to prevent multiple application programs running in a single address
space from overwriting each other.

How to Use This Book
This book is one of the set of programming books for MVS. This set describes how
to write programs in assembler language or high-level languages, such as C,
FORTRAN, and COBOL. For more information about the content of this set of
books, see z/OS Information Roadmap.

Where to Find More Information
Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for all
products that are part of z/OS, see z/OS Information Roadmap.

The following table lists titles and order numbers for books related to other
products:

Short Title Used in This Book Title Order Number

Principles of Operation z/Architecture Principles of Operation SA22-7832

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

xiv z/OS V1R3.0 MVS Extended Addressability Guide

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library .

3. Click on zSeries .

4. Click on Software .

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

About This Book xv

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

xvi z/OS V1R3.0 MVS Extended Addressability Guide

Summary of changes

Summary of changes
for SA22-7614-02
z/OS Version 1 Release 3

This book contains information previously presented in z/OS MVS Programming:
Extended Addressability Guide, SA22-7614-01, which supports z/OS Version 1
Release 2.

New information

v An appendix with z/OS product accessibility information has been added.

This book includes terminology, maintenance, and editiorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this book—for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7614-01
z/OS Version 1 Release 2

This book contains information previously presented in z/OS MVS Programming:
Extended Addressability Guide, SA22-7614-00, which supports z/OS Version 1
Release 1.

New information

v Chapter 4, “Using the 64-bit Address Space” on page 4-1

This book includes terminology, maintenance, and editiorial changes, including
changes to improve consistency and retrievability.

Summary of changes
for SA22-7614-00
z/OS Version 1 Release 1

This book contains information also presented in OS/390 MVS Programming:
Extended Addressability Guide.

© Copyright IBM Corp. 1988, 2002 xvii

xviii z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 1. An Introduction to Extended Addressability

Over the years, MVS has changed in many ways. Two key areas of growth and
change are addressability and integrity. The concept of an address space is an
integral part of both. An address space, literally defined as the range of addresses
available to a computer program, is like a programmer’s map of the virtual storage
available for code and data. An address space provides each programmer with
access to all of the addresses available through the computer architecture.

Because it maps all of the available addresses, an address space includes system
code and data as well as user code and data. Thus, not all of the mapped
addresses are available for user code and data. This limit on user applications was
a major reason for System/370 Extended Architecture (370-XA) and MVS/XA.
Because the effective length of an address field expanded from 24 bits to 31 bits,
the size of an address space expanded from 16 megabytes to 2 gigabytes. An
MVS/XA address space is 128 times as big as an MVS/370 address space.

A 2-gigabyte address space, however, does not, in and of itself, meet all of
programmers’ needs in an environment where processor speed continues to
increase, where applications must support hundreds of users with instant response
time requirements, and where businesses depend on quick access to huge
amounts of information stored on DASD.

With z/OS, the MVS address space expands to a size so vast that we need new
terms to describe it. Each address space, called a 64-bit address space, is 16
exabytes in size; an exabyte is slightly more than one billion gigabytes. The new
address space has logically 264 addresses. It is 8 billion times the size of the former
2-gigabyte address space that logically has 231 addresses. The number is 16 with
18 zeros after it: 16,000,000,000,000,000,000 bytes, or 16 exabytes. If you are
coding a new program that needs to store large amounts of data, a 64-bit address
space might work for you. See Chapter 4, “Using the 64-bit Address Space” on
page 4-1.

If, however you need more than a large address space, other extended
addressability techniques meet that need. Extended addressability allows
programmers to extend the power of applications through the use of additional
address spaces or data-only spaces. The data-only spaces that are available for
your programs are called data spaces and hiperspaces. These spaces are similar in
that both are areas of virtual storage that your program can ask the system to
create. Their size can be up to 2 gigabytes, as your program requests. Unlike an
address space, a data space or hiperspace contains only user data; it does not
contain system control blocks or common areas. Program code cannot run in a data
space or a hiperspace.

The following diagram shows, at an overview level, the difference between an
address space and a data space or hiperspace.

© Copyright IBM Corp. 1988, 2002 1-1

Both the architecture and the system protect the integrity of code and data within an
address space. Various techniques, like storage protect key and supervisor state
requirements, provide protection that is almost like a wall around an address space,
and this wall is basically a good thing from the point of view of the work going on
inside that individual address space.

The programming techniques that provide extended addressability permit programs
to break through but still preserve the wall that protects the address space.

Whether your application is one that can use extended addressability depends on
many factors. One basic factor is the amount of central, expanded, and auxiliary
storage available at your installation to back up virtual storage. Extended
addressability frequently requires additional amounts of virtual storage, which
means that your installation must have sufficient central and auxiliary storage, and
some of the techniques work most efficiently only when expanded storage is
available.

The goals for the design of a particular application are equally important in the
decision-making process. These goals might include:

v Performance. For an application with large numbers of online end users,
achieving the best possible response time is always a significant design goal.

v Efficient use of system resources, such as storage, and efficient use of the DASD
resources.

v Ability to randomly access very large amounts of data.

v Data integrity and isolation. Data in an address space is generally available to all
tasks (or TCBs) running in that address space; access to data in a data space or
hiperspace can be restricted. Code running in an address space can
inadvertently overlay data; because of its isolation, data in a data space or
hiperspace is less likely to be overlaid.

v Independence from individual device characteristics, from record-oriented
processing, and from data management concerns in general. Extended
addressability can allow an application to focus on controlling data as information
in contrast to controlling data as records in data sets stored on DASD volumes.

v Reduction in the size and complexity of the programming effort required to
develop a new application.

Achieving these goals depends to a very great extent on choosing a way to extend
addressability that meets your needs. You need to understand, at a very high level,

2 gigabytes

Address Space

Data Space
or

Hiperspace

User Programs
and data

4 kilobytes
or

2 gigabytes

User Programs
and data

System programs
and data

User data

1-2 z/OS V1R3.0 MVS Extended Addressability Guide

basic concepts related to each technique and how you might apply extended
addressability to specific programming situations.

At the detailed technical level, extended addressability can mean learning new
programming techniques, or new ways of applying existing techniques. At a higher
level, extended addressability can open completely different solutions to
programming problems. With extended addressability, virtual storage, backed by
expanded storage, can become, conceptually, a high-performance medium for
application data. It is also important to note that you should think of extended
addressability techniques as ones you can use to modify existing applications as
well as code new ones.

To use an example of how extended addressability can open up new solutions,
assume you need to write an application to sort 5000 records.

If you can hold only 50 records in storage, you must use DASD for intermediate
workfile processing.

If you can hold 500 records in storage, the solution is still the same, though it
requires fewer I/O operations.

If you can hold all 5000 records in storage, the original solution still works, but it
is now possible to devise a completely different solution, one, for example, that
does not depend on a DASD workfile. This new solution could both improve
performance and reduce the effort required for program development.

This simple example illustrates how extended addressability can both improve the
performance of existing solutions and open the possibility of new solutions. The
large amounts of virtual and processor storage now available to an application can
allow totally new solutions and simplify the entire process of application
development.

Basic Concepts
No single technique for extended addressability meets all possible needs. Choosing
the right one for a particular application requires you to understand the advantages
and disadvantages of the technique and some of the key differences between them.
Many applications require a combination of various techniques. Before you decide
to incorporate one or more of the techniques in the design of a new application, or
decide to use a technique to modify an existing application, consult the detailed
technical description of each technique.

Asynchronous Cross Memory Communication
Asynchronous cross memory communication is a fancy way to describe scheduling
an SRB. An SRB is a service request block that a task can schedule to request that
some service take place in the same address space or another address space. Any
data that the requesting task and the service share must be placed in common
storage.

SRBs are one way to overlap processing. A task schedules an SRB to perform a
service, then continues with its work. When the service completes, it informs the
task. The timing, however, is asynchronous; the point when the SRB completes
cannot be predicted.

Chapter 1. An Introduction to Extended Addressability 1-3

Technical Description
See “Asynchronous Inter-Address Space Communication” in z/OS MVS
Programming: Authorized Assembler Services Guide.

Synchronous Cross Memory Communication
Synchronous cross memory communication, called cross memory, is both more
complex and more flexible than scheduling an SRB. Cross memory requires the
programmer to use MVS macros to establish a cross memory environment. This
environment clearly defines the authorization requirements that protect the integrity
of the address spaces involved. Once this environment is established, the
application can use assembler instructions to transfer control from one address
space to another.

Cross memory applications (as well as applications running in a single address
space) can use the processor-managed linkage stack to simplify program linkages.
In a cross memory environment, the program call (PC) instruction that transfers
control to another routine can be either a basic PC or a stacking PC. If it is a
stacking PC, the system saves status on the linkage stack before it passes control
to the PC routine. When the PC routine returns control, the system automatically
restores status from the linkage stack.

The key fact to remember, however, is that cross memory provides synchronous
communication or processing across address spaces. When a task issues a PC
instruction, control passes to the PC routine. When the PC routine completes, it
returns control to the calling routine. Cross memory, for example, allows an
application running in one address space to provide services for many users in
other address spaces.

Technical Description
See Chapter 2, “Linkage Stack” on page 2-1 and Chapter 3, “Synchronous
Cross Memory Communication” on page 3-1. Chapter 8, “Creating Address
Spaces” on page 8-1 contains related information.

Access Register ASC Mode
In access register address space control (ASC) mode, a program can use the full
set of assembler instructions (except MVCP and MVCS) to manipulate data in
another address space or in a data space. Unlike cross memory, access registers
allow full access to data in many address spaces or data spaces.

ASC mode determines how the processor resolves address references for the
executing program. In primary ASC mode, the processor uses the contents of
general purpose registers to resolve an address to a specific location. In access
register ASC mode, an access register (AR) identifies the space the processor is to
use to resolve an address. The processor uses the contents of an AR as well as
the contents of general purpose registers to resolve an address to a specific
location.

In AR ASC mode, a program can move, compare, or perform operations on data in
other address spaces or in data spaces. It is important to understand, however, that
ARs do not enable a program to transfer control from one address space to

1-4 z/OS V1R3.0 MVS Extended Addressability Guide

another. That is, you cannot use ARs to transfer control from a program in one
address space to a program in another address space. For that, you need cross
memory.

You can, however, use ARs without using cross memory. If your application needs
to manipulate data in other address/data spaces but does not need to transfer
control to other address spaces, use ARs. If your application needs to transfer
control to routines in other address spaces but does not need to manipulate data,
use cross memory. If your application needs both the transfer of control and the
manipulation of data, use both cross memory and ARs.

Technical Description
See Chapter 5, “Using Access Registers” on page 5-1.

Data-in-Virtual
Data-in-virtual enables you to map data into virtual storage but deal only with the
portion of it that you need. The DIV macro provides the system services that
manage the data object. It enables you to map the object into virtual storage, create
a window, and “view” through that window only the portion of the data object that
you need. The system brings into central storage only the data that you actually
reference.

You can map a data-in-virtual object in either an address space, a data space, or a
hiperspace. Mapping the object into a data space or hiperspace provides additional
storage for the data; the size of the window is no longer restricted to the space
available in an address space. It also provides additional isolation and integrity for
the data, as well as more direct methods of sharing access to that data.

Data-in-virtual is most useful for applications, such as graphics, that require large
amounts of data but normally reference only small portions of that data at any given
time. It requires that the source of the object be a VSAM linear data set on DASD
(a permanent object) or a hiperspace (a temporary object).

Data-in-virtual is also useful for applications that require small amounts of data;
data-in-virtual simplifies the way you access data by avoiding the complexities of
access methods.

Technical Description
See “Data-in-Virtual” in z/OS MVS Programming: Assembler Services Guide.

Virtual Lookaside Facility
The virtual lookaside facility (VLF) is a set of MVS services that provide a
high-performance alternate path method of retrieving named objects from DASD on
behalf of many users. VLF is designed primarily to improve the response time for
such applications.

VLF uses data spaces to hold data objects in virtual storage as an alternative to
repeatedly retrieving the data from DASD. If you have an existing data retrieval
application or are considering designing one, determine whether VLF can meet your
needs.

Chapter 1. An Introduction to Extended Addressability 1-5

Technical Description
See “Virtual Lookaside Facility (VLF)” in z/OS MVS Programming: Authorized
Assembler Services Guide.

Data Spaces and Hiperspaces
Data spaces and hiperspaces are data-only spaces that can hold up to 2 gigabytes
of data. They provide integrity and isolation for the data they contain in much the
same way as address spaces provide integrity and isolation for the code and data
they contain. They are an extremely flexible solution to problems related to
accessing large amounts of data. There are two basic ways to place data in a data
space or a hiperspace. One way is through buffers in the program’s address space.
Another way avoids using address space virtual storage as an intermediate buffer
area: through data-in-virtual services, a program can move data into a data space
or hiperspace directly. For hiperspaces, this second way reduces the amount of I/O.

Programs that use data spaces run in AR ASC mode. They use MVS macros to
create, control, and delete data spaces. Assembler instructions executing in the
address space directly manipulate data that resides in data spaces.

Programs that use hiperspaces run in primary or AR ASC mode. They use MVS
macros to create, control, and delete hiperspaces. Programs cannot directly
manipulate data in a hiperspace, but use MVS macros to transfer data to and from
the hiperspace for data manipulation. Hiperspaces provide high-speed access to
large amounts of data.

Technical Description
To decide whether to use a data space or a hiperspace, see “Basic Decision:
Data Space or Hiperspace”. More detailed information appears in Chapter 6,
“Creating and Using Data Spaces” and Chapter 7, “Creating and Using
Hiperspaces”.

Basic Decision: Data Space or Hiperspace
For storing data, MVS offers a program a choice of two kinds of virtual storage
areas outside the program’s address space: data spaces and hiperspaces. You
must make these decisions:
v Does my program need virtual storage outside the address space?
v Which kind of virtual storage is appropriate for my program?

Data spaces and hiperspaces are similar in that both are areas of virtual storage
that the program can ask the system to create. They differ in the way your program
accesses data in the two areas. This difference, and others, are described in later
chapters. But before you can understand the differences, you need to understand
what your program can do with these virtual storage areas.

Under certain conditions, virtual input/output (VIO) can be a better option than a
data space or a hiperspace. “Choosing VIO Instead of a Data Space or a
Hiperspace” on page 1-11 compares data spaces, hiperspaces, and VIO, and
presents some trade-offs.

1-6 z/OS V1R3.0 MVS Extended Addressability Guide

What Can a Program Do With a Data Space or a Hiperspace?
Programs can use data spaces and hiperspaces to:

v Obtain more virtual storage than a single address space gives a user.

v Isolate data from other tasks in the address space.

Data in an address space is accessible to all programs executing in that address
space. You might want to move some data to a data space or hiperspace for
security or integrity reasons. You can restrict access to data in those spaces to
one or several units of work.

v Share data among programs that are executing in the same address space or
different address spaces.

Instead of keeping the shared data in common areas, create a data space or
hiperspace for the data you want your programs to share. Use this space as a
way to separate your data logically by its own particular use.

v Provide an area in which to map a data-in-virtual object.

You can place all types of data in a data space or hiperspace, rather than in an
address space or on DASD. Examples of such data include:
v Tables, arrays, or matrixes
v Data base buffers
v Temporary work files
v Copies of permanent data sets

Because data spaces and hiperspaces do not include system areas, the cost of
creating and deleting them is less than that of an address space.

To help you decide whether you need this additional storage area, some important
questions are answered in the following sections. These same topics are addressed
in greater detail in the appropriate chapter later in the book.

How Does a Program Obtain a Data Space or a Hiperspace? Data spaces and
hiperspaces are created through the same system service: the DSPSERV macro.
On this macro, you request either a data space or a hiperspace. You also specify
some characteristics for the space, such as:
v Its size
v Its name
v Its storage key
v Its fetch protection attributes

The macro service allocates contiguous virtual storage of the size (up to two
gigabytes) you specify.

Who Owns a Data Space or Hiperspace? Although programs create data spaces
and hiperspaces, they do not own them. When a program creates a data space or
hiperspace, the system assigns ownership to the TCB that represents the program
or to the TCB that your program chooses as the owner.

When a TCB terminates, the system deletes any data spaces or hiperspaces that
the TCB still owns. If you want the space to exist after the creating TCB terminates,
assign the space to a TCB that will continue to be active beyond the termination of
the creating TCB.

Chapter 1. An Introduction to Extended Addressability 1-7

Can Problem State Programs Use Data Spaces and Hiperspaces? Problem
state programs can create and use both data spaces and hiperspaces. Some types
of data spaces and hiperspaces require that a program be supervisor state or have
PSW key 0-7.

What are the Differences?
By now, you should know whether your program needs the kind of virtual storage
that a data space or hiperspace offers. Only by understanding the differences
between the two types of spaces, can you decide which one most appropriately
meets your program’s needs, or whether the program can use them both.

The main difference between data spaces and hiperspaces is the way a program
references data. A program references data in a data space directly , in much the
same way it references data in an address space. It addresses the data by the
byte, manipulating, comparing, and performing arithmetic operations. The program
uses the same instructions (such as load, compare, add, and move character) that
it would use to access data in its own address space. To reference the data in a
data space, the program must be in the ASC mode called access register (AR)
mode. Pointers that associate the data space with the program must be in place
and the contents of ARs that the instructions use must identify the specific data
space.

Figure 1-1 shows a program in AR mode using a data space. The CLC instruction
compares data at two locations in the data space; the MVC instruction moves the
data at location D in the data space to location C in the address space.

In contrast, a program does not directly access data in a hiperspace. MVS
provides a system service, the HSPSERV macro, to transfer the data between an
address space and a hiperspace in 4K byte blocks. The HSPSERV macro read
operation transfers the blocks of data from a hiperspace into an address space
buffer where the program can manipulate the data. The HSPSERV write operation
transfers the data from the address space buffer area to a hiperspace for storage.
You can think of hiperspace storage as a high-speed buffer area where your
program can store 4K byte blocks of data.

Figure 1-2 on page 1-9 shows a program in an address space using the data in a
hiperspace. The program uses the HSPSERV macro to transfer an area in the

Address Space Data Space

Program

CLC A,B
MVC C,D

CLC and MVC access data
while data is in data space.

C

D

A
B

Figure 1-1. Accessing Data in a Data Space

1-8 z/OS V1R3.0 MVS Extended Addressability Guide

hiperspace to the address space. While the data is in the address space, the
program compares the values at locations A and B, and uses the MVC instruction to
move data at location D to location C. After it finishes using the data in those
blocks, the program transfers the area back to the hiperspace. The program could
be in either primary or AR ASC mode.

With one HSPSERV invocation, the program can transfer data in more than one
area between the hiperspace and the address space.

Comparing Data Space and Hiperspace Use of Physical Storage
To compare the performance of manipulating data in data spaces with the
manipulating of data in hiperspaces, you should understand how the system “backs”
these two virtual storage areas. (That is, what kind of physical storage the system
uses to maintain the data in virtual storage.) The system uses the same resources
to back data space virtual storage as it uses to back address space virtual storage:
a combination of central storage and expanded storage (if available) frames, and
auxiliary storage slots. The system can move low-use pages of data space storage
to auxiliary storage and bring them in again when your program references those
pages. The paging activity for a data space includes I/O between auxiliary storage
paging devices and central storage.

The system backs hiperspace virtual storage with expanded storage only, or with a
combination of expanded and auxiliary storage, depending on your choice. When
you create a hiperspace, the system gives you storage that will not be the target of
assembler instructions and will not need the backing of real storage frames.
Therefore, when the system moves data from hiperspace to address space, it can
make the best use of the available resources.

Which One Should Your Program Use?
If your program needs to manipulate or access data often by the byte, data spaces
might be the answer. Use a data space if you frequently address data at a byte
level, such as you would in a workfile.

Address Space Hiperspace

Program

HSPSERV...

CLC A,B
MVC C,D

HSPSERV... HSPSERV read operatio
n

HSPSERV write
operatio

n

CLC and MVC access data
only after data has been
transferred from hiperspace
to address space.

C

D

A
B

Figure 1-2. Accessing Data in a Hiperspace

Chapter 1. An Introduction to Extended Addressability 1-9

If your program can easily handle the data in 4K byte blocks, a hiperspace might
give you the best performance. Use a hiperspace if you need a place to store data,
but not to manipulate data. A hiperspace has other advantages:
v The program can stay in primary mode and ignore the ARs.
v The program can benefit from the high-speed access.
v The system can use the unused central storage for other needs.

An Example of Using a Data Space
Suppose an existing program updates several rate tables that reside on DASD.
Updates are random throughout the tables. The tables are too large and too many
for your program to keep in contiguous storage in its address space. When the
program updates a table, it reads that part of the table into a buffer area in the
address space, updates the table, and writes the changes back to DASD. Each
time it makes an update, it issues instructions that cause I/O operations.

Assume you want to change this application to improve its performance. If the
tables were to reside in data spaces, one table to each data space, the tables
would then be accessible to the program through assembler instructions. The
program could move the tables to the data spaces (through buffers in the address
space) once at the beginning of the update operations and then move them back
(through buffers in the address space) at the end of the update operations.

If the tables are VSAM linear data sets, data-in-virtual can map the tables and
move the data into the data space where a program can access the data.
Data-in-virtual can then move the data from the data space to DASD. With
data-in-virtual, the program does not have to use address space buffers as an
intermediate buffer area for transferring data to and from DASD.

Technical Description
See Chapter 6, “Creating and Using Data Spaces” for more information about
data spaces.

An Example of Using a Hiperspace
Suppose existing programs running in the same address spaces use a data base
that resides on DASD. The data base contains many records, each one containing
personnel information about one employee. Access to the data base is random and
programs reference but do not update the records. Each time a program wants to
reference a record, it reads the record in from DASD.

This kind of application can benefit from a hiperspace. If the data base were to exist
in a hiperspace, a program would still bring one record into its address spaces at a
time. Instead of reading from DASD, however, the program would bring in the
records from the hiperspace on expanded storage (or auxiliary storage, when
expanded storage is not available). In effect, this technique can eliminate many I/O
operations and reduce execution time.

Technical Description
See Chapter 7, “Creating and Using Hiperspaces” for more information about
hiperspaces.

1-10 z/OS V1R3.0 MVS Extended Addressability Guide

Choosing VIO Instead of a Data Space or a Hiperspace
Virtual input/output (VIO), like data spaces and hiperspaces, is designed to reduce
the need for the processor to transfer data between DASD and central storage. In
this way, all three speed up the execution of your programs. Additionally, they all
use expanded storage, where possible, to back the data. This section compares
VIO with data spaces and hiperspaces and suggests the circumstances under
which you would choose VIO.

In making the decision on which to chose, you need to consider the following
questions:

v How is the data in your program organized?

v How does the program use the data?

v How much programming effort is required to change an existing program to take
advantage of VIO, data spaces, or hiperspaces?

Two tables in this section help you understand facts related to these questions.
Table 1-1 answers questions about the data the program uses.

Table 1-1. Data Requirements for VIO, Data Spaces, and Hiperspaces

Question VIO Data spaces Hiperspaces

Is the data in your program
temporary?

VIO supports only
temporary data.

Data spaces support
temporary data and
permanent data (through
DIV).

Hiperspaces support
temporary data and
permanent data through
DIV or data window
services. (For information
on using data window
services, see z/OS MVS
Programming: Assembler
Services Guide.)

Is the data in your program
sequential?

VIO (through EXCP)
supports both sequential
and random access;
however, random access
requires more processor
cycles.

Data spaces have no
requirement.

Hiperspaces have no
requirement.

Is data arranged (or able to
be organized) in 4K byte
blocks?

VIO has no requirement. Data spaces have no
requirement.

Hiperspaces require that
the data be accessed and
referenced in 4K byte
increments, located on a 4K
byte boundary.

You might have an existing program — either an assembler program or a
high-level-language (HLL) program — that you would like to change to use the
performance benefits of VIO, data spaces, or hiperspaces. Table 1-2 on page 1-12
compares the programming effort required to make this change.

Chapter 1. An Introduction to Extended Addressability 1-11

Table 1-2. Difficulty of Modifying an Existing Application

Question VIO Data spaces Hiperspaces

How difficult is it to modify
existing programs that use
I/O operations?

VIO requires no
modification to existing
programs that use an
access method that uses
EXCP. Either use storage
management subsystem
(SMS) to make global
requests to use VIO or use
JCL for an individual
program.

Assembler programs must
change to use system
macros and access
registers. Through VLF,
authorized programs can
use data spaces to store
and retrieve named objects.
HLL programs cannot use
data spaces directly.

Assembler programs must
change to use system
macros or data window
services. HLL programs
cannot use hiperspaces
directly. They can use
hiperspaces through data
window services.

What is the performance comparison? Data spaces and hiperspaces do not have
the overhead of an access method and the device simulation of VIO; therefore, they
require less processor time than VIO.

When would you choose VIO over data spaces or hiperspaces? Use VIO when
you want to improve the performance of an existing program, but you do not want
to make large changes. For information about how to use VIO, see z/OS MVS JCL
User’s Guide.

1-12 z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 2. Linkage Stack

The linkage stack is an area of protected storage that the system gives a program
to save status information at a branch or a program call. This chapter describes the
linkage stack and the assembler instructions that cause the system to add and
remove an entry and modify the entry.

Saving status is a required part of program linkage. Status includes general
purpose registers (GPRs), access registers (ARs), the PSW, and other important
information. The first thing a program does when it receives control is save the
status of its caller. The last thing the program does before it returns control is
restore the caller’s status. The calling program can then resume processing with its
status (including registers and cross memory environment) intact. For example, your
PC routines might have used the PCLINK STACK macro to save a caller’s status
and then the PCLINK UNSTACK macro to restore the status.

An easier way to save and restore status, however, is to allow the system to do it
for you through the linkage stack. The linkage stack saves you and the system work
in the following ways:

v The “chain” of status save areas is located in one place rather than chained
throughout storage. Diagnostic information thus appears in sequence on the
linkage stack. (For the contents of an entry in the stack, see “Contents of the
Linkage Stack Entry” on page 2-4.)

v The linkage stack provides a place for reentrant programs to save the caller’s
complete status before the reentrant programs dynamically obtain their working
storage. Once a program has saved the caller’s status on its linkage stack, it has
all 16 GPRs and ARs available to establish its working environment.

v Your programs do not have to obtain and chain 72-byte save areas, provided all
called programs are using the linkage stack.

The following illustration shows how a program uses the linkage stack. The call
from Program 1 to Program 2 automatically places all the caller’s status on the
linkage stack. The return from Program 2 to Program 1 automatically restores all
the caller’s status and removes the entry from the linkage stack.

The system provides each workunit (that is, TCB or SRB) with its own linkage
stack. The linkage stack is then available to all programs that the workunit

Linkage Stack

(unstack)
(stack)

Current linkage
stack entry }

Program 1 Program 2

call return

© Copyright IBM Corp. 1988, 2002 2-1

represents. The programs can run in primary or AR address space control (ASC)
mode. They can be problem state or supervisor state, locked or unlocked, enabled
or disabled.

The linkage stack actually consists of two stacks: the normal linkage stack and the
recovery linkage stack. The normal linkage stack consists of at least 96 entries for
use by programs that run under the workunit. (Note that under some circumstances,
the system might provide more than 96 entries, but you will always have at least
96.) When the system needs an entry and finds that all entries in the normal stack
are used, it abends the program with a “stack full” interruption code. After the “stack
full” interruption occurs, the system uses the recovery linkage stack. The recovery
linkage stack is available to the program’s recovery routines after the “stack full”
interruption occurs. If you anticipate a need for more than 96 entries, you can use
the LSEXPAND macro to expand the size of the normal and recovery stacks for
tasks. For information about how and when to issue the LSEXPAND macro, see
“Expanding a Linkage Stack to a Specified Size” on page 2-7.

Linkage Stack Considerations for Asynchronous Exit Routines
A user may request an asynchronous exit routine to execute on behalf of a task.
When an asynchronous exit routine gets control, it cannot access the last entry (if
any) on the linkage stack, because that entry was created by the interrupted
routine. The extract stacked registers (EREG) instruction, extract stacked state
(ESTA) instruction, and the modify stacked state (MSTA) instruction will cause a
linkage stack exception to occur.

Any routines to which the exit routine passes control are also subject to the same
restriction. However, the exit routine, or any routines to which it passes control, can
manipulate linkage stack entries that they themselves add.

Instructions that Add and Remove a Linkage Stack Entry
The three instructions that cause the system to add or remove entries on the
linkage stack are:

v The stacking program call (PC), which adds an entry when it passes control to
another routine.

v The branch and stack (BAKR), which adds an entry whether it branches to
another routine or not.

v The program return (PR), which removes an entry when it returns from a call or
branch made with either a stacking PC or a BAKR.

This chapter introduces each instruction and gives simple examples of each. It is
not intended to direct you in your coding. For complete descriptions of the
instructions, see Principles of Operation.

The stacking PC instruction adds an entry to the linkage stack. Chapter 3,
“Synchronous Cross Memory Communication” describes the two types of PC
linkages. The stacking PC uses the linkage stack to save the user’s environment.
The basic PC , on the other hand, requires that the PC routine provide code to save
the user’s environment. The stacking and basic PC instructions are cross memory
instructions; they are described in more detail in “PC Linkages” on page 3-5.
Chapter 3, “Synchronous Cross Memory Communication” also contains a
comparison of the coding of a stacking PC and a basic PC. The linkage stack
instructions BAKR and PR are described in the following sections.

2-2 z/OS V1R3.0 MVS Extended Addressability Guide

Branch and Stack (BAKR) Instruction
The branch and stack (BAKR) instruction performs the branch and link in the same
way that the BALR does; additionally, it adds an entry to the linkage stack. The
entry includes the branch address of the calling routine.

A program can use the BAKR to branch to a subroutine in its address space and
add an entry to the linkage stack, or it can use a BAKR simply to branch to the next
instruction in the program and add an entry to the linkage stack. A program return
(PR) instruction returns control to the program and removes an entry from the
linkage stack.

The BAKR instruction does not change the current addressing mode, nor does it
cause a branch out of an address space. You can be in either primary or AR ASC
mode to use BAKR.

Program Return (PR) Instruction
The PR instruction performs several actions on the current entry in the linkage
stack — the current entry being the entry formed by the most recent BAKR or
stacking PC instruction:

v If the current entry was added by a stacking PC or a BAKR instruction, the PR
instruction returns control to the calling program.

v The PR instruction restores the contents of the current entry, including the cross
memory environment, the PSW, and the contents of registers 2 - 14.

v The PR instruction removes the current linkage stack entry.

The PR instruction can execute in either primary or AR mode.

The following example shows the PR instruction and a use of the BAKR instruction.

In the example, the BALR branches to subroutine SUBR. When SUBR receives
control, it uses BAKR to save the caller’s status on the linkage stack. The BAKR
saves the contents of register 14, which the calling program loaded with the
address of the instruction after the BALR, on the linkage stack. Zero, as the second
operand, means that the status information is saved and no branch occurs. The PR
instruction in SUBR restores the caller’s status, restores the contents of register 14,
removes the current linkage stack entry, and returns to the instruction after the
BALR in the calling program.

CALLING PROGRAM SUBROUTINE

.

.
L 15,=A(SUBR)
BALR 14,15
.
.
.
.

.

.

.
SUBR EQU *

BAKR 14,0
.
.
PR

Figure 2-1. Example of the BAKR Instruction

Chapter 2. Linkage Stack 2-3

This use of the BAKR instruction is consistent with the MVS convention in which the
called program saves the status of the caller. This convention is described in the
chapter on linkage conventions in z/OS MVS Programming: Assembler Services
Guide.

Example of Using the Linkage Stack
Figure 2-2 shows how the stacking PC and the BAKR instructions add entries to
TCBA’s linkage stack and how the PR instruction removes those entries.

The program call from Program 1 to Program 2 automatically places all the caller’s
status on the linkage stack (adding Entry 1 to the linkage stack). Program 2 uses
the BALR instruction to branch to a subroutine, which uses the BAKR instruction to
save Program 2’s status (adding Entry 2 to the stack). When the subroutine returns
to Program 2 through the PR instruction, Program 2’s status is restored (removing
Entry 2 from the stack). When Program 2 uses the PR instruction to return to
Program 1, Program 1’s status is restored (removing Entry 1 from the stack). At any
time, the entry formed by the most recent BAKR or stacking PC instruction contains
the status of the caller of the currently executing code.

Contents of the Linkage Stack Entry
A linkage stack entry includes the following information:

v Contents of GPRs 0 - 15

v Contents of ARs 0 - 15

v Primary and secondary address space numbers (PASN and SASN)

v EAX

v Entire current PSW

v PSW key mask (PKM)

v PC number (if a stacking PC caused the entry) or a branch address (if a BAKR
caused the entry)

v An eight-byte area that you can change with the modify stacked state (MSTA)
instruction

TCBA

Linkage Stack

Entry 1

Entry 2

Program 1

Program 2
Subroutine

BAKR (Add Entry 2)
PC

BALR

PR

PR

(Add Entry 1)
(Remove Entry 1)

(Remove Entry 2)

Figure 2-2. Example of Using the Linkage Stack

2-4 z/OS V1R3.0 MVS Extended Addressability Guide

On return from a routine, the PR instruction restores the entry and returns control to
the calling program.

Instructions that Manipulate the Contents of a Linkage Stack Entry
A program cannot change the order of the entries on the linkage stack, nor can it
change any part of an entry, except for the eight-byte modifiable area of the current
entry. Three instructions copy information from the current entry or copy information
to the modifiable area of the current entry:

v The extract stacked registers (EREG) instruction loads ARs and GPRs from the
current linkage stack entry.

v The extract stacked state (ESTA) instruction obtains non-register information from
the current linkage stack entry.

v The modify stacked state (MSTA) instruction copies the contents of an even/odd
GPR pair to the modifiable area of the current linkage stack entry.

These instructions can execute in both primary and AR ASC mode.

Extract Stacked Registers (EREG) Instruction
Use the extract stacked registers (EREG) instruction to load ARs and GPRs from
the current linkage stack entry. A typical use of EREG is in the middle of a
subroutine after the caller’s input registers have been modified for other purposes.
Use EREG to restore the contents of the AR/GPR pairs.

In the following example, EREG extracts the contents of the calling program’s ARs
0-1 and GPRs 0-1 from the current entry and loads them into ARs 0-1 and GPRs
0-1. The entry in this example was caused by the BAKR instruction.

The EREG instruction does not change the current stack pointer.

Another example of using EREG to extract the contents of an AR/GPR pair appears
in “Example of Using TESTART” on page 5-32.

Extract Stacked State (ESTA) Instruction
A linkage stack entry includes the contents of the ARs and the GPRs, as well as
other information. The EREG instruction copies the ARs and GPRs from the current
entry; the ESTA instruction copies the rest of the information (that is, the
non-register information) from the current entry. The non-register information is
divided into four eight-byte information fields and is identified to the ESTA
instruction by a code.

CALLING PROGRAM SUBROUTINE

.
L 15,=A(SUBR)
BALR 14,15
.
.
.
.

SUBR EQU *
BAKR 14,0
.
.
.
EREG 0,1
.
.
PR

Figure 2-3. Example of an EREG Instruction

Chapter 2. Linkage Stack 2-5

Figure 2-4 shows the code for each of the four information fields and the format of
the fields. The format of the third field varies depending on whether a BAKR or a
stacking PC instruction caused the entry.

The ESTA instruction copies one of the fields in the current entry into an even/odd
pair of GPRs. It returns a condition code that tells whether the entry on the linkage
stack was formed by the BAKR (CC=0) or stacking PC (CC=1) instruction.

In the following example, the load address instruction (LA) loads a code of “1” into
register 9, where “1” identifies the information field that contains the PSW. The
ESTA instruction then copies this field into general registers 4 and 5. The BZ
instruction causes a branch if the stack entry was formed by a BAKR.

Another example of the ESTA instruction appears in Figure 5-17 on page 5-32.

Format of Information FieldsCode

0

2 or

1

3

PKM

Reserved

Reserved

SASN

A

EAX

PSW

Modifiable Area

PASN

Branch Address

PC Number

0

0

0

0

0

2 4

4

6 7

7

7

7

7

Figure 2-4. Format of the Information Fields

* Program entered through a stacking PC or BAKR
* Code of 1 identifies the PSW in the linkage stack entry

.

.
LA 9,1 Load the code of 1 into general register 9
ESTA 4,9 Load the PSW into general registers 4 and 5
BZ BAKRTYPE If CC=0, then BAKR formed the stack entry

If CC=1, then stacking PC formed the entry

Figure 2-5. Example of an ESTA Instruction

2-6 z/OS V1R3.0 MVS Extended Addressability Guide

Modify Stacked State (MSTA) Instruction
The MSTA instruction moves the contents of an even/odd pair of GPRs into the
modifiable area of the current linkage stack entry. You might use the ESTA
instruction later to load the contents of the modifiable area into registers.

In the following example, general registers 6 and 7 contain 8 bytes to be placed into
the modifiable area of the current linkage stack entry. The MSTA instruction copies
the 8 bytes to the modifiable area. The load address (LA) instruction loads a code
of 3 into GPR 1. (The code for the modifiable area is “3”.) Later in the example, the
ESTA instruction copies the contents of the modifiable area into general register 2.

For an example of using MSTA to pass data to an associated recovery routine
(ARR), see the section on providing recovery in the z/OS MVS Programming:
Authorized Assembler Services Guide.

Expanding a Linkage Stack to a Specified Size
The system provides a way for programs running in task mode to expand the size
of the normal and recovery linkage stacks. The default size for a normal linkage
stack is at least 96 entries. A linkage stack of this size is probably sufficient for your
program’s needs. However, if you have a program, such as one with recursive
code, that needs more than 96 entries, you can use the LSEXPAND macro to
request a normal linkage stack of up to 16,000 entries.

When a program uses up all of the entries in the normal linkage stack, the system
abends the workunit and sets up a recovery linkage stack. The default for this
linkage stack is 24 entries. The LSEXPAND macro can increase the recovery
linkage stack to 4000 entries.

The timing of the execution of the LSEXPAND macro is important. You must
anticipate using up the entries in the stack. If the program has already issued a
“stack full” program interruption, the system will not accept the LSEXPAND macro
and will abend the workunit. In other words, don’t wait until the normal linkage stack
is full to issue this macro.

Example of Requesting Larger Normal and Recovery Linkage Stacks

To request that the linkage stack have 2000 entries and the recovery linkage stack
have 150 entries, code the following LSEXPAND macro:
LSEXPAND NORMAL=2000,RECOVERY=150

* Program entered through a stacking PC or BAKR
* General registers 6 and 7 contain 8 bytes to be placed
* into modifiable area of the current linkage stack entry
* Code of 3 identifies the modifiable area in entry

.

.
MSTA 6 Update modifiable area
.
.
LA 1,3 Load code of 3 into general register 1
ESTA 2,1 Load modifiable area into general registers 2 and 3

Figure 2-6. Example of an MSTA Instruction

Chapter 2. Linkage Stack 2-7

Relationship Between the Linkage Stack and ESTAE-type Recovery
Routines

When a user provides an ESTAE-type recovery routine through the ESTAE or
ESTAEX macro, the system saves the current linkage stack position. The user must
deactivate the ESTAE-type recovery routine under the linkage stack entry that was
current when the ESTAE-type recovery routine was activated. z/OS MVS
Programming: Authorized Assembler Services Guide describes how the macros that
provide recovery for your programs use the linkage stack.

Dumping the Contents of the Linkage Stack
In case of an error, you might want to check the status information that the system
saved when your program gained control. Through the interactive problem control
system (IPCS) FORMAT line command, you can display or print dump data
associated with a specified address space. z/OS MVS Diagnosis: Tools and Service
Aids contains an example of a dump of an entry in the linkage stack.

2-8 z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 3. Synchronous Cross Memory Communication

Synchronous cross memory communication enables one program to provide
services synchronously to other programs. This book calls the program that
provides the services, the service provider, and the programs that use the services,
users. The service provider can provide services to one user or to many.

Synchronous cross memory communication takes place between the user and the
service provider when the user issues a program call (PC) instruction. If the service
provider has previously established the necessary environment, the PC instruction
transfers control to a service provider program called a PC routine. The PC routine
provides the requested service and then returns control to the user.

The user program and the PC routine can execute in the same address space or in
different address spaces. In either case, the PC routine executes under the same
TCB as the user. Thus, the PC routine provides the service synchronously.

A PC routine can access (fetch or store) data in the user’s address space by using
access registers (ARs) and the full set of assembler instructions. If the PC routine
has the proper authority, it can also access data in other address spaces or in data
spaces. For information about using access registers, see Chapter 5, “Using Access
Registers” on page 5-1.

Note: In releases prior to SP3.1.0, a PC routine could access data in the user’s
address space only by issuing the MVCP or MVCS instructions. PC routines
can still use these instructions. IBM recommends the use of access
registers, however.

The rest of this chapter discusses when you should consider using synchronous
cross memory communication and explains the environment the service provider
must create and how to create it.

When Should You Use Synchronous Cross Memory Communication?
The use of synchronous cross memory communication to provide services to users
can provide virtual storage constraint relief as well as improve the integrity of the
service and its data. Consider using synchronous cross memory communication if
you wish to:

v Isolate the service and its data from the user of the service

v Make the service available to multiple users without the need to store it in
commonly addressable storage

v Replace an existing service request block (SRB) routine to gain improved
performance or simplify communication

v Provide an authorized service to problem state programs

Synchronous cross memory communication enables you to provide services to
many users without making the service available in commonly addressable storage.
At the same time, you can isolate the service from the user, thus protecting it by
having the service in its own address space.

© Copyright IBM Corp. 1988, 2002 3-1

Terminology, Macros, and Assembler Instructions
To fully understand the rest of the cross memory discussion, there are some terms
that you must understand and macros and assembler instructions that you must
become familiar with.

Cross Memory Terminology
The following terms are used within this chapter. For definitions of other terms used
in this book, see the glossary.

v Address space control (ASC) mode: The mode (determined by the PSW) that
tells the system where to find the data it is to reference. Two ASC modes are AR
and primary. For each ASC mode, the following table defines:

– The address space from which the system fetches instructions

– The address space or data space that the system accesses when an
instruction, other than an MVCP or MVCS instruction, references data

– The address space the system accesses when an MVCP or MVCS instruction
references data

v AR ASC mode: The ASC mode in which the system uses both the GPR (used
as the base register) and the corresponding AR to resolve an address in an
address/data space.

ASC Mode Instruction
Fetch

Data Access MVCP/MVCS

Primary ASC mode Primary address
space

Primary address
space

Primary or
secondary
address space

Secondary ASC mode Primary address
space (see Note)

Secondary
address space

Primary or
secondary
address space

AR ASC mode Primary address
space

Address space
indicated by the
AR

Unavailable.
Causes an
abend in AR
ASC mode.

Note: Prior to ESA/370 architecture, the address space from which instructions are fetched
is unpredictable when a program is running in secondary ASC mode.

v Basic PC: Transfers control to another program, the PC routine. The basic PC
requires the service provider to save and restore the user’s environment. The PC
routine can be in the same address space as the program that issues the PC
instruction, or in a different address space.

v Cross memory local (CML) lock: The LOCAL lock of an address space other
than the home address space.

v Cross memory mode: Cross memory mode exists when at least one of the
following conditions are true:

– The primary address space (PASN) and the home address space (HASN) are
different address spaces.

– The secondary address space (SASN) and the home address space (HASN)
are different address spaces.

– The ASC mode is secondary.

v Home address space: The address space in which MVS initially dispatches a
TCB or SRB (work unit). In the case of a TCB, the home address space contains
the TCB. PSAAOLD points to the home address space. When MVS initially

3-2 z/OS V1R3.0 MVS Extended Addressability Guide

dispatches a work unit, the home address space, the primary address space, and
the secondary address space are all the same. During execution of the work unit,
the home address space remains the same. The primary and secondary address
spaces may be changed, however, through the PC, PR, PT, or SSAR
instructions.

v Primary address space: The address space whose segment table is used to
fetch instructions in primary, secondary, and AR ASC modes. A program in
primary mode fetches data from the primary address space.

v Primary ASC mode: The ASC mode in which the system uses the GPRs, but
not the ARs, to resolve an address in an address space. In primary ASC mode,
the system fetches instructions and data from the primary address space.

v PC number: A number that identifies a PC routine. The service provider creates
the number, by using MVS services, and supplies it to the user. The user
specifies the number in a PC instruction to identify the PC routine that is to be
invoked.

v PC routine: A program that receives control as the result of a PC instruction’s
executing and performs a service for the caller.

v Secondary address space: The address space whose segment table the
system uses to access data in secondary ASC mode.

v Secondary ASC mode: The ASC mode in which the system fetches instructions
from the primary address space and data from the secondary address space.

v Space switch routine: A program that issues a PC instruction that causes the
primary address space to change.

v Stacking PC: Transfers control to another program, the PC routine. The stacking
PC uses the linkage stack for storing the caller’s status. It provides more options
and more automatic function than the basic PC instruction. The PC routine can
be in the same address space as the program that issues the PC instruction, or
a different address space. IBM recommends using the stacking PC instead of
the basic PC.

Macros Used for Synchronous Cross Memory Communication
MVS provides the following macros that the service provider uses to create,
disconnect, or destroy the environment (tables, linkages, and indexes) needed for
cross memory communication. This chapter discusses when and how to use these
macros. For detailed information about the macro’s syntax and parameters, see one
of the following:

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

A brief description of each macro follows.

v ATSET (Set Authority Table): Sets PT and SSAR authority in the home address
space’s authority table entry that corresponds to a specified authorization index.

v AXEXT (Extract Authorization Index): Returns the authorization index (AX) value
of a specified address space.

v AXFRE (Free Authorization Index): Frees one or more authorization index (AX)
values by returning them to the system.

v AXRES (Reserve Authorization Index): Reserves one or more authorization index
(AX) values for use by the caller of the macro.

Chapter 3. Synchronous Cross Memory Communication 3-3

v AXSET (Set Authorization Index): Sets the authorization index (AX) of the home
address space to the value specified by the caller of the macro.

v ETCON (Connect Entry Table): Connects one or more entry tables to specified
linkage table indexes in the home address space.

v ETCRE (Create Entry Table): Builds a program call (PC) entry table from PC
routine definitions that the service provider defined by issuing the ETDEF macro
or by defining the entry definitions directly.

v ETDEF (Create Entry Table Descriptor): Builds or modifies the PC routine
definitions that ETCRE uses as input.

v ETDES (Destroy Entry Table): Destroys an entry table.

v ETDIS (Disconnect Entry Table): Disconnects one or more entry tables from the
home address space’s linkage table.

v LXFRE (Free a Linkage Index): Frees one or more previously reserved linkage
indexes.

v LXRES (Reserve a Linkage Index): Reserve one or more linkage indexes for
future use.

v PCLINK (Stack, Unstack, or Extract Program Call Linkage Information): Basic PC
routines that receive control in supervisor state can issue

– Save the user’s environment after the PC routine gets control.

– Restore the user’s environment before issuing the PT instruction to return
control to the user.

– Retrieve information from a saved environment.

Instructions Used for Cross Memory Communication
The following assembler instructions provide the control capabilities and information
a program needs for synchronous cross memory communication. For a detailed
explanation of the following instructions, see Principles of Operation.

v EPAR (extract primary ASN) - Places the ASID of the primary address space into
a general purpose register (GPR).

v ESAR (extract secondary ASN) - Places the ASID of the secondary address
space into a general purpose register.

v IAC (insert address space control) - Indicates, in a general purpose register, the
current ASC mode.

v MVCK (move with key) - Moves data between storage areas that have different
storage protection keys.

v MVCP (move to primary) - Moves data from the secondary address space to the
primary address space.

v MVCS (move to secondary) - Moves data from the primary address space to the
secondary address space.

v PC (program call) - Invokes the program identified by the specified PC number.
There are two types of PC linkages, basic and stacking. Both linkages transfer
control to another program, the PC routine. The stacking PC, however, provides
more capability and better performance than the basic linkage. The PC routine
that receives control can be in an address space other than the address space in
which the PC instruction was issued.

v PR (program return) - Returns control to a program that issued a stacking PC
instruction.

v PT (program transfer) - Returns control to a program that issued a basic PC.

v SAC (set address space control) - Explicitly sets the ASC mode.

3-4 z/OS V1R3.0 MVS Extended Addressability Guide

v SSAR (set secondary ASN) - Sets the secondary address space to the desired
address space.

An Overview of Cross Memory Communication
Cross memory communication takes place when a user program issues a PC
instruction that specifies a valid PC number. The PC number identifies the PC
routine that the system is to invoke. The service provider must have previously
defined the PC routine and made the PC number available to the user. The PC
routine can provide the requested service or can invoke other programs to provide
the service. When the PC routine completes its function, it issues either the PR
instruction (for a stacking PC) or a PT instruction (for a basic PC) to return control
to the user program.

PC Routines
To provide a service, the service provider supplies a PC routine and uses MVS
macros to make the PC routine available to the address space of the user who
needs the service. A service provider can make a PC routine available to users in
all address spaces or to users in selected address spaces only. Before a user can
invoke a PC routine, however, the user also needs a PC number, which the service
provider must provide. Each PC number identifies a specific PC routine.

PC Routine Invocation
Any program can issue a PC instruction provided the program is running in either
primary or AR ASC mode. When a program issues a PC instruction, the system
invokes the requested PC routine providing the service provider has made the PC
routine available to the calling program’s address space. In addition, if the calling
program is running in problem state, it must also have a PSW-key mask (PKM) that
the service provider has authorized to invoke the PC routine. The PC routine, or
other routines that it invokes, performs the service the caller desires.

The service provider is responsible for defining the level of authorization problem
programs need to invoke a PC routine. The service provider defines the level of
authorization for each PC routine by specifying the PKM that a problem state
program must have to invoke the PC routine. If the problem program’s PKM agrees
with the service provider’s specification, the system allows the problem program to
invoke the PC routine. Otherwise, the PC instruction causes a program interrupt
(privileged operation exception).

PC Linkages
There are two types of PC linkages, basic and stacking. The terms basic and
stacking refer to the type of PC linkage used to invoke the PC routines. The basic
PC linkage and the stacking PC linkage are similar in that each invokes a program.
They are different, however, in the manner of invocation and the capabilities
available on invocation.

The stacking PC provides more capability and better performance than does the
basic PC. For example, the stacking PC uses the system provided linkage stack to
save and restore the user’s environment. On the other hand, the basic PC requires
that the PC routine provide code to save and restore the user’s environment. For a
detailed comparison of the stacking PC and the basic PC, see “PC Linkages and
PC Routine Characteristics” on page 3-28.

PC Routine Execution
A PC routine executes in either the service provider’s address space or in the
user’s address space. A PC routine that causes a space switch (PC-ss) executes in

Chapter 3. Synchronous Cross Memory Communication 3-5

the service provider’s address space, which becomes the primary address space. A
PC routine that does not cause a space switch (PC-cp) executes in the user’s
primary address space, which remains the primary address space. The service
provider uses the ETDEF macro to indicate whether a PC routine is to cause a
space switch. Regardless of where the PC routine executes, it always runs under
the same TCB or SRB as the program that issued the PC instruction.

A PC routine may provide services directly to the user, or it may invoke other
routines to provide the services. If necessary, a PC routine can itself issue PC
instructions.

Stacking PC Routines: When a user invokes a stacking PC routine, the system
saves the user’s environment on the linkage stack. After the PC routine completes
its function, it must issue the PR instruction to restore the user’s environment and
return control to the user.

Basic PC Routines: When a user invokes a basic PC routine, the PC routine
must save the user’s environment. To save the environment, the PC routine can
issue the PCLINK macro or can provide code that performs the save function. After
completing its function, the PC routine must restore the user’s environment. Again,
the PC routine can use the PCLINK macro or provide code that performs the
restore function. Only PC routines that run in supervisor state can issue the
PCLINK macro. PC routines that run in problem state must provide code that
performs the same functions as the PCLINK macro.

To return control to the user, the PC routine issues the PT instruction. To execute a
PT instruction, the service provider must have previously been granted PT authority
by the user. PT authority means that the service provider is authorized to issue the
PT instruction with the target being the user’s address space. The AXSET macro
provides the means to grant PT authority.

The following figure shows how a user invokes a PC routine to obtain a service.

3-6 z/OS V1R3.0 MVS Extended Addressability Guide

Accessing Data from a PC Routine
To access data that is in another address space or in a data space, or to store data
into another address space or data space, IBM recommends that the PC routine
use ARs. To use ARs, the PC routine must be in AR ASC mode. A PC routine can
use ARs in the same way any other program uses them. For information about
using ARs and for some examples, see Chapter 5, “Using Access Registers” on
page 5-1.

The PC routine can, if necessary, access data in the user’s address space without
using ARs. The MVCP instruction moves data from the secondary address space
(the user) to the primary address space (the service provider). The MVCS
instruction moves data from the primary address space (the service provider) to the
secondary address space (the user). To use the MVCP or MVCS instructions, the
service provider must have obtained SSAR authority to the user’s address space
before the PC routine receives control. The AXSET macro provides the means to
grant SSAR authority. The primary address space and the secondary address
space must be different address spaces (PASN¬=SASN).

The following figure shows how a PC routine can use the MVCP or MVCS
instructions to access data.

Program

Cross Memory User

PC Routine

Service Provider

.

.

.

.

.

.

.

.

.

PC

Example 1
1. A program in the cross memory user's address space issues a PC

instruction to request a service.

The system transfers control to the PC routine in the service
provider's address space.

1

2

3

2. The PC routine in the service provider's address space performs
the service.

3. After performing the service, a stacking PC issues a PR instruction
and a basic PC issues a PT instruction to return control to the
cross memory user's program.

Figure 3-1. PC Routine Invocation

Chapter 3. Synchronous Cross Memory Communication 3-7

Summary of Cross Memory Communication
There are several important points to remember about cross memory
communication:

1. Cross memory facilities enable the service provider to provide services to some
or all users.

2. The service provider code and the user code can execute in the same address
space or in different address spaces.

Program

Cross Memory User

PC Routine

Service Provider

.

.

.

.

.

.

.

.

.

PC

.

.

.

.

.

.

.

.

.

.

.

.

MVCP

MVCS

Example 2
1. A program in the cross memory user's address space issues a PC

instruction to request a service.

The system transfers control to the PC routine in the service
provider's address space.

1 2

3

4

5

2. The PC routine in the service provider's address space performs
the service.

3. The PC routine retrieves data from the cross memory user.

4. The PC routine stores data back into the cross memory user's address
space.

5. After performing the service the PC routine returns control to the
cross memory user's program.

DATA

Figure 3-2. Accessing Data Through the MVCP and MVCS Instructions

3-8 z/OS V1R3.0 MVS Extended Addressability Guide

3. The service provider uses MVS macros to establish and maintain the
environment needed for cross memory communications.

4. The service provider supplies services through PC routines. For each PC
routine, the service provider supplies the user with a PC number that identifies
the routine.

5. To obtain a service from the service provider, the user issues a PC instruction.
The instruction specifies the PC number of the PC routine that the user wants to
invoke.

6. The stacking PC provides more capability and better performance than does the
basic PC. IBM recommends using the stacking PC.

7. To store data into or retrieve data from other address spaces or from data
spaces, IBM recommends using ARs. The service provider can, if necessary,
access data in the user’s address space without using ARs. To do this, the
service provider can use the MVCP instruction to retrieve data from the user’s
address space and the MVCS instruction to move data into the user’s address
space.

The Cross Memory Environment
The term cross memory environment refers to the tables and linkages that connect
the service provider’s address space to the user’s address space and to the tables
and linkages that provide the necessary authorization for the service provider. The
term also refers to the PC numbers used to initiate cross memory communication.

Following this topic are two figures, Figure 3-3 on page 3-12 and Figure 3-4 on
page 3-13, that show how the cross memory environment supports communication.
Refer to these figures as you read this topic.

Entry Tables
For each PC routine, the service provider issues the ETDEF macro to define the
PC routine’s name or entry point and its environment. A PC routine’s environment
refers to whether the routine runs in supervisor state or problem state, the value of
the routine’s authorization key mask, whether the routine causes a space switch,
and so forth. After defining the PC routine’s environment, the service provider
issues ETCRE to create an entry table. The service provider’s home address space
owns the entry table.

The entry table contains one entry for each PC routine. Each entry contains the
operating environment definition created by ETDEF. Before a user can invoke a PC
routine, the service provider must connect the entry table to the linkage table of the
user’s address space.

Linkage Tables
Each address space has a linkage table. The linkage table provides a means for
the service provider to connect a user address space to one or more entry tables. A
linkage index (LX) that the service provider obtains through the LXRES macro
provides an index to an entry in the user’s linkage table.

There are two types of LXs, a system LX and a non-system LX. To connect an
entry table to the linkage table in one or more, but not all address spaces, the
service provider must use a non-system LX . To connect an entry table to all
linkage tables, the service provider must use a system LX . A system LX, for
example, enables an installation to replace an installation-written SVC routine with a
PC routine that gets invoked through a system linkage index.

Chapter 3. Synchronous Cross Memory Communication 3-9

The PC Number
The service provider must also supply the user with a PC number. The service
provider creates this number by concatenating the LX to the entry table index (EX).
As previously stated, the LX is an index into the linkage table. The EX is an index
into the entry table and identifies the relative entry in the entry table that
corresponds to the PC routine that is to receive control. For example, if the first
table entry corresponded to the PC routine, the EX would be X‘00’; if it was the
second entry, the EX would be X‘01’, and so forth. The service provider is
responsible for calculating and keeping track of entry table indexes. When a
program issues the PC instruction, the system uses the PC number to locate the
correct entry table entry and transfer control to the PC routine.

The service provider and the user must agree on a method the service provider will
use to provide the user with the PC number. The service provider might, for
example, supply a macro that returns the PC number to the user. Or the service
provider could place the PC number in a storage area common to both the service
provider and the user. The user could then retrieve the PC number from the
common area.

Program Authorization - PKM (PSW Key Mask)
Each program has associated with it a PSW key mask (PKM) value. The PKM is a
string of 16 bits that represents storage protection keys that are valid for a problem
state program to use, where bit n equal to 1 indicates that the program is
authorized to use key n. The system uses the PKM to check the authorization of
problem state programs only. Supervisor state programs do not require PKM
authority.

For a problem state program, the PKM defines:

v The PSW-key values that the program can set by means of the SPKA instruction

v The storage key values the program can specify on the MVCK, MVCS, and
MVCP instructions

v PC routines that the program is authorized to invoke

All programs are initially dispatched with a PKM value equal to the storage protect
key of the program’s TCB or SRB. For example, a PKM value of X'0080' represents
key 8 and X'0001' represents key 15. The PC, PR, and PT instructions can change
the PKM value.

The entry that defines the PC routine in the entry table contains two fields that are
related to the PKM. Those fields are the authorization key mask (AKM) and the
entry key mask (EKM). The AKM is a 16-bit string value that indicates the keys that
will authorize a problem state program to invoke the PC routine. A problem state
program can invoke the PC routine if at least one bit in the PKM and the
corresponding bit in the AKM are both on (set to B‘1’).

The EKM is a 16-bit string value like the PKM. It can be used to alter the PSW keys
under which the PC routine will run. For a basic PC routine, the system ORs the
EKM into the PKM before the PC routine receives control. The result of the OR
operation is the PKM under which the PC routine will run. A stacking PC routine can
either have the system OR the EKM into the PKM, or have the system replace the
PKM with the EKM.

3-10 z/OS V1R3.0 MVS Extended Addressability Guide

Address Space Authorization
Each address space owns an authority table. Each table entry defines the PT and
SSAR authority that another address space has with respect to the address space
that owns the authority table. PT and SSAR authority determine whether an
address space can issue PT and SSAR instructions with another address space as
the instruction targets. For example, if a service provider’s address space has PT
and SSAR authority with respect to a user’s address space, the service provider
can issue PT and SSAR instructions with the target being the user’s address space.

Each table entry corresponds to a particular authorization index (AX) value.
Therefore, the service provider’s AX value corresponds to a specific entry in each
user’s authority table. That entry defines the service provider’s PT and SSAR
authority with respect to each user’s address space.

Two AX values, 0 and 1, have the same meaning for all address spaces. A value of
0 always corresponds to an authority table entry that provides neither PT nor SSAR
authority. A value of 1 always corresponds to an entry that provides both PT and
SSAR authority.

The characteristics of the PC routines defined in the entry table determine whether
the service provider needs PT and SSAR authority. The service provider needs the
authority if either of the following conditions are true:

v The entry table defines a basic PC routine that causes a space switch

v The entry table defines a stacking PC routine for which the ETDEF macro
specifies SASN=OLD.

When MVS initially creates an address space, the address space has neither PT
nor SSAR authority to any address space. The service provider uses the AXSET
and ATSET macros to establish PT and SSAR authority. If a service provider needs
PT and SSAR authority to all address spaces, the service provider must issue the
AXSET macro and request an AX value of 1.

Figure 3-3 on page 3-12 and Figure 3-4 on page 3-13 show the environment needed
to issue a PC instruction, a PT instruction, or an SSAR instruction. An address
space can have only one AX value at any time. The service provider that runs in
the address space owns the current AX value for the address space. Only the
service provider should set the AX value from 0 to a single non-0 value, or from a
non-0 value to 0 in the address space. Other code besides the service provider that
runs in the address space should not alter the current AX value, or unpredictable
results occur.

Chapter 3. Synchronous Cross Memory Communication 3-11

Linkage Table

Cross Memory User

Entry Table

Service Provider

• The cross memory user issues the PC instruction .

5 8
9

74

3

2

1

1

2
3

5 6

8

4

7

9

6

• The system uses the linkage index together with a system maintained
pointer to locate a particular entry in the linkage table .

• The system uses linkage table value together with the EX value
to locate a particular entry in the service provider's entry table .

• The system uses information from the entry table entry to invoke the
requested PC routine .

•

•

PC LX EX

PC Routine

Figure 3-3. PC Instruction Execution Environment

3-12 z/OS V1R3.0 MVS Extended Addressability Guide

Considerations Before Using Cross Memory
Before using cross memory, there are several things of which to be aware about the
cross memory environment. The use of cross memory also places some
requirements and restrictions on programs that you must consider.

Environmental Considerations
v Resource management is different - If your cross memory programs invoke

programs in other address spaces, you might need to manage resources
differently. For example, your cross memory programs must be able to handle the
situation that occurs when an invoked program in another address space
abnormally terminates.

v Accounting methods might be affected - Your cross memory programs might
acquire the ownership of resources on behalf of cross memory users. You might
want to account for these resources differently than the way you account for your
own resources.

.

.

.

.

.

.

.

.

SSAR

PT

Authority Table

Cross Memory User

PC Routine

Service Provider

• The service provider issues either a PT or a SSAR instruction.

5

1

4

3

2

1

2
3

5

4

• The system uses the service provider's AX value together with a
system maintained pointer to locate a particular entry in the cross
memory user's authority table .

• The table entry specifies whether the cross memory user has granted
the service provider PT or SSAR authority.

• •
AX

Figure 3-4. PT and SSAR Instruction Execution Environment

Chapter 3. Synchronous Cross Memory Communication 3-13

v The execution time of PC routines is attributed to the home address space,
which may not be the address space in which the program executes.

Restrictions
v MVS macros are unavailable to programs running in cross memory mode unless

the macro documentation specifically states that it is available.

v Code running in cross memory mode cannot issue any SVCs except ABEND.
That is, any macro that depends on SVCs is unavailable in cross memory mode.

v Only one step of a job can establish ownership of space switch entry tables.
Subsequent job steps cannot issue the LXRES, AXRES, or ETCRE macros.

v Routines that get control as the result of a PC instruction must not use the
checkpoint/restart facility.

v In order to be accessed, the address space must be one or more of the
following:

– The home address space

– A non-swappable address space

– An address space whose local lock is held or whose local lock is held as a
cross memory local (CML) lock.

Requirements
Storage acquired in a cross memory environment is attributed to the job step task
of the address space in which it was obtained if the subpool it comes from is task
related. A program that acquires such a resource should provide a task
termination/address space termination resource manager to clean up any resources
obtained on behalf of the terminating task or address space but attributed to
another address space’s job step task. For more considerations on resource
management, see “Resource Management” on page 3-37.

Establishing Cross Memory Communication
Before cross memory communication can take place, the service provider must
establish the cross memory environment. The service provider does this by
supplying PC routines and by issuing the MVS macros that establish the necessary
linkages and authorizations.

The macros the service provider issues to establish, disconnect, or destroy the
cross memory environment are:
v ATSET
v AXEXT
v AXFRE
v AXRES
v AXSET
v ETCON
v ETCRE
v ETDEF
v ETDES
v ETDIS
v LXFRE
v LXRES

The actual set of macros the service provider must issue depends on the following:

v Whether the services will be available to all address spaces or to selected
address spaces only

3-14 z/OS V1R3.0 MVS Extended Addressability Guide

v Whether the PC routine is space switch or non-space switch.

The service provider must issue these macros from a program that is running in
supervisor state or with a PSW-key mask of 0-7, and is enabled, unlocked, and in
primary ASC mode.

In addition to the previously listed macros, the service provider might also issue the
PCLINK macro. The PCLINK macro enables a basic PC routine to save and restore
the user’s environment. Only basic PC routines that are in supervisor state are
permitted to issue the PCLINK macro.

These macros are fully described in one of the following:

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Note: Installations that currently build their own PC routine definitions and use
IHAETD to map the format 0 ETD may continue to do so. IBM recommends
the use of the ETDEF macro, however.

Making a PC Routine Available to All Address Spaces
If the PC routine is to be available to users in all address spaces, code running in
the service provider’s address space must issue the macros. The following figure
lists the macros that must be issued. For a space switch routine, refer to the left
column. For a non-space switch routine, refer to the right column. Several of the
macros shown in the figure must be issued in a specific sequence. Therefore, IBM
recommends that the service provider issue the macros in the sequence listed.

Address Space Authorization
The types of PC routines the entry table will define determine whether the service
provider needs PT and SSAR authority to the user’s address space. PT and SSAR
authority are needed if either or both of the following conditions are true:

v The entry table defines a basic PC routine that causes a space switch

Space Switch Routine Non-space Switch Routine

AXSET (See note 1)
LXRES (See note 2)
ETDEF
ETCRE
ETCON (See note 3)
PCLINK (See note 4)

LXRES (See note 2)
ETDEF
ETCRE
ETCON
PCLINK (See note 4)

Notes:

1. Use an AX value of 1.

2. Use a system LX.

3. To determine whether address space authorization (PT and SSAR authority) is needed
before issuing the ETCON macro, see Address Space Authorization.

4. Basic PC routines must issue the PCLINK macro to save and to restore the user’s
environment.

Figure 3-5. Required Macros to Make PC Routines Available to All Users

Chapter 3. Synchronous Cross Memory Communication 3-15

v The entry table defines a stacking PC routine for which the ETDEF macro
specifies SASN=OLD.

If the service provider needs PT or SSAR authority, it must be obtained before
issuing the ETCON macro. The service provider can obtain PT and SSAR authority
to all address spaces by issuing AXSET with an AX value of 1. If the correct
authorization is not established, the ETCON macro will fail.

Linkage Index
The LXRES macro supplies the service provider with a linkage index (LX). Because
the PC routine is to be available to all users, the service provider should obtain a
system LX. Note that there are a limited number of system LXs available, and a
system LX cannot be freed for reuse. See “Reusing LXs” on page 3-40 for more
information about system LXs.

PC Routines and the Entry Table
The service provider must also issue the ETDEF macro to define each PC routine
and the ETCRE macro to create the entry table. The service provider must then
issue ETCON to connect the entry table to the user’s address space.

Basic PC Routine Linkage
When a basic PC routine receives control, it must save the user’s environment.
Before returning control to the user, the PC routine must restore the user’s
environment. A basic PC routine that receives control in supervisor state can issue
the PCLINK macro to save and to restore the user’s environment. A basic PC
routine that receives control in problem state must provide code that performs a
function similar to the PCLINK macro.

Making a PC Routine Available to Selected Address Spaces
Characteristics of the PC routines that the entry table defines determines which
macros the service provider must issue. The following figure lists the macros that
must be issued.

The figure is divided into three columns. For a basic PC routine, refer to the left
column. For a stacking PC routine where SASN=OLD is specified, refer to the
center column. For a stacking PC routine where SASN=NEW is specified, refer to
the right column. (U) identifies macros that must be issued by service provider code
that is running in the user’s address space. Several macros shown in the figure
must be issued in a specific sequence. Therefore, IBM recommends that the
service provider issue the macros in the listed sequence.

3-16 z/OS V1R3.0 MVS Extended Addressability Guide

Linkage Index (LX)

Regardless of the types of PC routines the entry table will define, the service
provider must always issue the LXRES macro to reserve a non-system LX. The rest
of the macros that the service provider must issue depend on the types of PC
routines the entry table will define.

Basic PC Routine

Authorization Index: The service provider must issue the AXRES macro to
reserve an authorization index (AX) if address space authorization is required. The
service provider must then issue the AXSET macro using the reserved AX value as
input. AXSET assigns the AX value as the authorization index for the service
provider’s home address space.

Address Space Authorization: The types of PC routines that the entry table
defines determines whether the service provider needs PT and SSAR authority to
the user’s address space. Authority is needed if:

v The entry table defines a basic PC routine that causes a space switch

v The entry table defines a stacking PC routine for which the ETDEF macro
specifies SASN=OLD.

If the service provider needs PT or SSAR authority, it must be obtained before
issuing the ETCON macro. Otherwise, the ETCON macro will fail.

To obtain address space authorization, service provider code, running in the user’s
address space, must issue the ATSET macro. Input to ATSET must be the AX value
reserved by the service provider.

PC Routines and the Entry Table: The service provider must issue ETDEF to
define the PC routines and ETCRE to create the entry table. To connect the entry
table to the user’s address space, service provider code, running in the user’s
address space, must issue the ETCON macro.

Basic PC Routine Stacking PC Routine

SASN=OLD SASN=NEW

AXRES
AXSET
LXRES (See note 1)
ETDEF
ETCRE
ATSET (U)
ETCON (U) (See note 2)
PCLINK

AXRES
AXSET
LXRES (See note 1)
ETDEF
ETCRE
ATSET (U)
ETCON (U) (See note 2)

LXRES (See note 1)
ETDEF
ETCRE
ETCON (U) (See note 2)

Notes:

1. Use a non-system LX.

2. To determine whether address space authorization (PT and SSAR authority) is needed before issuing the ETCON
macro, see “Address Space Authorization” for basic PC routines and “Address Space Authorization” on page 3-18
for stacking PC routines.

Figure 3-6. Required Macros to Make PC Routines Available to Selected Address Spaces

Chapter 3. Synchronous Cross Memory Communication 3-17

Basic PC Routine Linkage: When a basic PC routine receives control, it must
issue the PCLINK macro to save the user’s environment. Before returning to the
user’s the PC routine must again issue PCLINK, this time to restore the user’s
environment.

Stacking PC Routine

Authorization Index: The types of PC routines that the entry table defines
determines whether the service provider must obtain an authorization index. If either
of the following conditions are true, the service provider must obtain an
authorization index:

v The entry table defines a basic PC routine that causes a space switch

v The entry table defines a stacking PC routine for which the ETDEF macro
specifies SASN=OLD.

The service provider must issue the AXRES macro to reserve an AX. The service
provider must then issue the AXSET macro using the reserved AX value as input.
AXSET assigns the AX value as the authorization index for the service provider’s
home address space.

Address Space Authorization: If the service provider had to obtain an
authorization index, address space authorization is also required. The service
provider must obtain address space authorization (PT and SSAR authority) before
issuing the ETCON macro. Otherwise, the ETCON macro will fail.

To obtain address space authorization, service provider code, running in the user’s
address space, must issue the ATSET macro. Input to ATSET must be the AX value
reserved by the service provider.

PC Routines and the Entry Table: The service provider must issue ETDEF to
define the PC routines and ETCRE to create the entry table. To connect the entry
table to the user’s address space, service provider code, running in the user’s
address space, must issue the ETCON macro.

PC Number
Before the user can invoke a basic PC routine or a stacking PC routine, the service
provider must supply the user with the PC number that identifies the PC routine.
For information about how to do this, see “The PC Number” on page 3-10.

Examples of How to Establish a Cross Memory Environment
This topic contains examples that show three ways to establish services that a user
can access by issuing a PC instruction. The tasks that the service provider must
perform are grouped into the following categories:

v SETTING UP initializes the structure that cross memory needs so the transfers of
control can take place.

v ESTABLISHING ACCESS sets up the linkage the user needs to access the
services.

v PROVIDING SERVICE consists of designing a service for cross memory use.

v REMOVING ACCESS disconnects the linkage that enabled a user to use the
services.

v CLEANING UP removes the structures established in the setting up step.

3-18 z/OS V1R3.0 MVS Extended Addressability Guide

“Example 1 - Making Services Available to Selected Address Spaces” shows how a
service provider can supply services to users in selected address spaces. (The
example shows only one user, but the extra steps for adding users are pointed out.)

“Example 2 - Making Services Available to All Address Spaces” on page 3-26 shows
how a service provider can make services available to users in all address spaces.

“Example 3 - Providing Non-Space Switch Services” on page 3-28 explains how a
service provider can provide non-space switch services.

For each example, assume that the service provider has obtained common storage
that the user can access through name/token callable services. The service
provider could use the area pointed to by the token returned by name/token callable
services to store the PC numbers corresponding to its services. It could also store
some of the lists it needs to invoke PC/AUTH services, and the lists that must be
available to different address spaces. Assume also that SERVBLK, shown in
Figure 3-7, describes the common storage area. All examples use the declared
storage areas shown in Figure 3-7.

For information on using name/token callable services, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Exampl e 1 - Making Services Available to Selected Address Spaces

Setting Up
To make its services available to other address spaces through a PC instruction,
the service provider sets up the authorization structures and the linkage and entry
tables.

To request that the system reserve an authorization index (AX) for the service
provider’s address space, or an extended authorization index (EAX) for a PC
routine, the service provider issues the AXRES macro. The AX or EAX is reserved
across the entire system. The home address space at the time the AXRES macro is
issued becomes the owner of the AX or EAX:

LA 2,1
STH 2,AXCOUNT REQUEST 1 AX

GETAX AXRES AXLIST=AXL,RELATED=FREEAX

SERVBLK DSECT

LXL DS 0F LX LIST
LXCOUNT DS F NUMBER OF LXS REQUESTED
LXVALUE DS F LX RETURNED BY LXRES
AXL DS 0F AX LIST
AXCOUNT DS H NUMBER OF AXS REQUESTED
AXVALUE DS H AX RETURNED BY AXES
TKL DS 0F TOKEN LIST
TKCOUNT DS F NUMBER OF ETS CREATED
TKVALUE DS F TOKEN RETURNED BY ETCRE
PCTAB DS 0F TABLE OF PC NUMBERS
SERV1PC DS F PC NUMBER FOR SERVICE 1
SERV2PC DS F PC NUMBER FOR SERVICE 2

Figure 3-7. Declared Storage for Cross Memory Examples

Chapter 3. Synchronous Cross Memory Communication 3-19

See “Extended Authorization Index (EAX)” on page 3-31, “Types of Access List
Entries” on page 5-11 and “EAX-Authority to an Address Space” on page 5-25 for
more information about the EAX.

To set the AX of the service provider’s address space to the AX value that MVS
reserved, the service provider issues the AXSET macro:
SETAX AXSET AX=AXVALUE,RELATED=(GETAX,SETAX)

To request that the system reserve a non-system LX for later use, the service
provider issues the LXRES macro to reserve a 4-byte LX. A non-system LX allows
a service provider to connect to selected users. The home address space at the
time the LXRES macro is issued becomes the owner of the LX:

.

.
LA 2,1
ST 2,LXCOUNT REQUEST 1 LX

GETLX LXRES LXLIST=LXL,RELATED=FREELX
.
.

To define which PC routines will be available to user, the service provider must
issue two macros, ETDEF and ETCRE. The ETDEF macro builds an entry table
descriptor (ETD). Each ETD defines a PC routine. The ETCRE macro uses the
ETDs as input to build an entry table. The entry table contains ETD entries for each
of the PC routines that the service provider is making available to the user. The
home address space at the time the service provider issues the ETCRE macro
becomes the owner of the entry table.

There are two ways the service provider can use the ETDEF macro:

v If all of the information about the PC routine being defined is available at the time
the ETDEF macro is assembled, the service provider can statically define an
ETD by specifying the TYPE=ENTRY option.

v If some of the information about the PC routine being defined is unavailable
when assembling the ETDEF macro, the service provider must issue ETDEF
twice: once with TYPE=ENTRY, and once with TYPE=SET. TYPE=ENTRY
reserves storage for an ETD entry. TYPE=SET initializes the ETD entry, and
overrides any options specified on TYPE=ENTRY. For any options the service
provider omits on TYPE=SET, the system uses the default values. For example,
if the service provider specifies TYPE=ENTRY with ASYNCH=NO, and then does
not specify the ASYNCH parameter on TYPE=SET, the system uses the default
of ASYNCH=YES. (See the description of the ETDEF macro in z/OS MVS
Programming: Authorized Assembler Services Reference ENF-IXG for more
information.)

Use this method if any of the input data is unresolvable when assembling the
ETDEF macro. For example, a program’s name may be known at assembly time,
but not the address at which it will be loaded.

To define a complete ETD suitable as input to ETCRE, the service provider must
issue the ETDEF macro three or more times:

v Once to define the beginning of the table

v Once for each PC routine to be defined in the table

v Once to define the end of the table.

3-20 z/OS V1R3.0 MVS Extended Addressability Guide

Note: Instead of issuing ETDEF, the service provider has the option to code the
data areas that ETDEF builds. IBM provides a mapping macro, IHAETD, that
maps the format 0 ETD. IBM recommends , however, the use of the ETDEF
macro.

The following figure shows how to use ETCRE and ETDEF to create an entry table
that defines two stacking PC routines. This example works only when the PC
routines are located in LPA or in the nucleus.

In the previous example, the first ETDEF macro defines the beginning of the entry
table definition.

The second ETDEF macro defines a space switch PC routine named Service1. This
PC routine receives control in problem state, requires that all input and output
parameters be in key 8 storage, and can reference date that is in key 8 storage
only. This example of the ETDEF macro shows how to define a stacking PC routine
that decreases authority.

v The routine is a stacking PC because PC=STACKING is the default.

v The STATE=PROBLEM parameter specifies that the PC routine will receive
control in problem state.

v The parameter AKM=(0:15) specifies that programs running with any PSW key
may invoke the PC routine.

v The parameter EK=8 specifies that the PC routine will run with PSW key 8.

v The parameter PKM=REPLACE specifies that the system is to replace the
PSW-key mask with the mask specified by the parameter EKM=8 before invoking
the PC routine.

The third ETDEF macro defines a non-space switch PC routine named Service2.
This PC routine can reference input/output parameters in any key. This example of
the ETDEF macro shows how to define a stacking PC routine that increases
authority.

v The routine is a stacking PC because PC=STACKING is the default.

v The STATE=SUPERVISOR parameter specifies that the PC routine, Service2,
will receive control in supervisor state.

v The parameter AKM=(0:15) specifies that programs running with any PSW key
may invoke the PC routine.

********* Executable Instructions
*

.

.
CET1 ETCRE ENTRIES=ETDESC,RELATED=(CONET,DISET1,DESET1)

ST 0,TKVALUE Save Returned Token
.
.

********* Data Constants
*
ETDESC ETDEF TYPE=INITIAL,RELATED=(CET1)

ETDEF TYPE=ENTRY,PROGRAM=’SERVICE1’,SSWITCH=YES, X
STATE=PROBLEM,AKM=(0:15),EKM=8,EK=8,PKM=REPLACE

ETDEF TYPE=ENTRY,PROGRAM=’SERVICE2’,SSWITCH=NO, X
STATE=SUPERVISOR,AKM=(0:15),EKM=(0:15),PKM=OR

ETDEF TYPE=FINAL

Figure 3-8. Using ETDEF to Statically Define Entry Table Descriptors

Chapter 3. Synchronous Cross Memory Communication 3-21

v The parameter EKM=(0:15) specifies that the program will run with all PKM bits
on.

v The parameter PKM=OR specifies that the system is to OR the PSW-key mask
of the caller with the mask specified by EKM=(0:15) before invoking the PC
routine.

The last ETDEF macro defines the end of this entry table definition.

When a PC routine is not in LPA and is not in the nucleus, the service provider will
not know the location of the PC routine until it is loaded. Also, the service provider
will not know the address of the PC routine’s associated recovery routine (ARR)
until it is loaded, and will not know the EAX value until the AXRES macro is issued.
Therefore, the service provider must create at least part of the entry table
definitions dynamically. The following figure shows how the service provider could
create the entry table if the PC routine, Service1, and the ARR, ARR1, were loaded
into private storage first. The figure shows code for a non-reentrant program.
ETDEF TYPE=SET specifies a complete entry replacement. All options are either
set or defaulted. Nothing is carried over from the TYPE=ENTRY declaration. Note
that, in this example, the service provider uses the AX value, provided through the
AXRES macro, as an EAX value.

*
********* Executable Instructions
*

LA 1,1(0)
ST 1,AXNUM
AXRES AXLIST=AXL GET AN EAX FOR SERVICE1 (THE X

PC ROUTINE)
L 4,AXVAL
LOAD EP=SERVICE1 GET ADDRESS OF SERVICE1
ST 0,SRV1ADDR SAVE ADDRESS OF SERVICE1
LR 2,0
LOAD EP=ARR1 GET ADDRESS OF ARR1
ST 0,ARR1ADDR SAVE ADDRESS OF ARR1
LR 3,0
.
.
ETDEF TYPE=SET,ETEADR=ETD1,ROUTINE=(2),SSWITCH=YES, X

STATE=PROBLEM,AKM=(0:15),EKM=8,EK=8,PKM=REPLACE, X
ARR=(3),EAX=(4)

.

.
CET1 ETCRE ENTRIES=ETDESC,RELATED=(CONET,DISET1,DESET1)

ST 0,TKVALUE SAVE RETURNED TOKEN
*
********* Data Definition area
*
SRV1ADDR DS F ADDRESS OF SERVICE1
ARR1ADDR DS F ADDRESS OF ARR1
ETDESC ETDEF TYPE=INITIAL
ETD1 ETDEF TYPE=ENTRY,ROUTINE=0
ETD2 ETDEF TYPE=ENTRY,PROGRAM=’SERVICE2’,SSWITCH=NO, X

STATE=SUPERVISOR,AKM=(0:15),EKM=(0:15),PKM=OR
ETDEF TYPE=FINAL

AXL DS 0F AXLIST
AXNUM DS H NUMBER OF AXs REQUESTED
AXVAL DS H RETURNED AX (OR EAX)

Figure 3-9. Using ETDEF to Dynamically Define Entry Table Descriptors

3-22 z/OS V1R3.0 MVS Extended Addressability Guide

The preceding example of the ETDEF macro shows how to define a stacking PC
routine that uses an ARR and an EAX:

v The parameter ROUTINE=(2) specifies that the PC entry point address is in
register 2.

v The parameter ARR=(3) specifies that the address of the ARR to receive control
if the stacking PC routine ends abnormally is in register 3.

v The parameter EAX=(4) specifies that the EAX value for the PC routine is in
register 4.

Once the linkage and entry tables have been created, the service provider can
construct the PC numbers that identify the PC routines. A PC number is a fullword
value formed by combining an LX and an EX.

The LXRES macro returns the LX in the format that’s shown below. This format
allows the service provider to OR the LX with an EX to form a PC number:

L 2,LXVALUE LX=PC# WITH EX OF 0
LA 2,0(,2) CONSTRUCT EX=0 PC#
ST 2,SERV1PC SAVE PC# FOR FIRST SERVICE
LA 2,1(,2) CONSTRUCT EX=1 PC#
ST 2,SERV2PC SAVE PC# FOR SECOND SERVICE

To make the PC numbers accessible, the service provider can save the address of
its SERVBLK by using name/token callable services:

LA 2,SERVBLK
ST 2,SERVBLKA
CALL IEANTCR,(LEVEL,NAME,TOKEN,PERSOPT,RETCODE)
.
.
.

LEVEL DC A(IEANT_SYSTEM_LEVEL)
NAME DC CL16’SERVBLK’
TOKEN DS 0XL16
SERVBLKA DS A

DS XL12
PERSOPT DC A(IEANT_NOPERSIST)
RETCODE DS F

IEANTASM INCLUDE NAME/TOKEN SERVICES X
ASSEMBLER DECLARATION STATEMENTS

Establishing Access
The next two steps make the service provider’s services available to a user. The
instructions used for these two steps must be issued from the user’s address space
by a program running in supervisor state or with a PKM value of 0-7. If the user is a
problem state program, the service provider must provide code that executes on
behalf of the user with the user’s address space as the home address space. The
service provider must repeat these two steps for each user.

0

0 11 12 23 24 31

LX EX

0 LX 0

Chapter 3. Synchronous Cross Memory Communication 3-23

1. Set the PT and SSAR authority in the user’s authority table entry that
corresponds to the service provider’s AX value. This action allows the service
provider to issue a PT or SSAR instruction with the user’s address space as the
instruction target.
SETAT ATSET AX=AXVALUE,PT=YES,SSAR=YES,RELATED=RESETAT

2. Connect the service provider’s entry table to the user’s linkage table at the entry
that corresponds to the service provider’s LX. After the system completes the
connection, the linkage table entry points to the service provider’s entry table.

LA 2,1
ST 2,TKCOUNT SET COUNT OF ETS TO BE CONNECTED

CONET ETCON TKLIST=TKL,LXLIST=LXL,RELATED=DISET1

To invoke a PC routine, the user still needs a PC number. The service provider and
the user must have previously agreed on a method the service provider will use to
provide a PC number. For example, the service provider could provide a macro that
the user issues to find the PC number that the service provider has stored in a
table in commonly addressable storage.

At this point in the example, the service provider has provided two services that the
user can access using PC instructions. The service provider has also established
authority to issue PT and SSAR instructions to the user’s address space. The user’s
linkage table is connected to the service provider’s entry table as shown in
Figure 3-10.

Invoking a PC Routine
The PC instruction gives control to a PC routine. The PC number determines the
specific PC routine that receives control. The entry table entry that corresponds to
the PC number defines the PC routine’s location and environment. To return to the
caller, a stacking PC routine issues the PR instruction; a basic PC routine issues
the PT instruction.

Figure 3-11 on page 3-25 shows the instruction sequence needed to invoke a
stacking PC routine. The stacking PC automatically saves the user’s environment.
When the PC routine issues the PR instruction to return control to the caller, the
system restores the caller’s environment.

ETE for Service 1

ETE for Service 2

invalid

invalid

LX
SS

ET
SS

EX=0

EX=1

EX=2

EX=3

ET
SS

At this point, the service

provider has established its

ability to provide two

services to a user via a PC.

The user's LT is connected

to the service provider's

entry table.

LT user

Figure 3-10. Linkage Table and Entry Table Connection

3-24 z/OS V1R3.0 MVS Extended Addressability Guide

Figure 3-12 shows the instruction sequence needed to invoke a basic PC routine.
The calling program must save registers and its SASID before issuing the PC
instruction. When the PC returns control, the caller must restore registers and the
SASID.

To make it easier for the user to invoke a PC routine, the service provider can
provide a macro that generates the needed instruction sequence.

.

.
USING PSA,0
CALL IEANTRT,(LEVEL,NAME,TOKEN,RETCODE) OBTAIN SERVBLK ADDRESS
CLC RETCODE,=A(IEANT_OK) CHECK RETURN CODE
BNE NOSERVIC IF NO TOKEN, SERVICES NOT AVAILABLE
L 15,SERVBLKA
USING SERVBLK,14 ACCESS SERVBLK
L 14,SERV1PC GET PC NUMBER
DROP 14
PC 0(14) ISSUE THE PC
.
.
LEVEL DC A(IEANT_SYSTEM_LEVEL)
NAME DC CL16’SERVBLK’
TOKEN DS 0CL16
SERVBLKA DS A

DS XL12
RETCODE DS F

IEANTASM INCLUDE NAME/TOKEN SERVICES X
ASSEMBLER DECLARATION STATEMENTS

Figure 3-11. Calling Sequence for a Stacking PC Routine

.

.
STM 14,12,12(13) SAVE REGISTERS
ESAR 2 SAVE CALLER’S SASID IN THE
ST 2,16(,13) REG 15 SLOT OF SAVEAREA
USING PSA,0
CALL IEANTRT,(LEVEL,NAME,TOKEN,RETCODE) OBTAIN SERVBLK ADDRESS
CLC RETCODE,=A(IEANT_OK) CHECK RETURN CODE
BNE NOSERVIC IF NO TOKEN, SERVICES NOT AVAILABLE
L 15,SERVBLKA
USING SERVBLK,15 ACCESS SERVBLK
L 2,SERV1PC OBTAIN SERVICE1 PC NUMBER
DROP 15
PC 0(2) ISSUE THE PC
L 14,12(,13) RESTORE REG 14
L 2,16(,13) LOAD SAVED SASID
SSAR 2 RESTORE CALLER’S SASID
LM 2,12,28(13) RESTORE REGS 2-12
.
.
LEVEL DC A(IEANT_SYSTEM_LEVEL)
NAME DC CL16’SERVBLK’
TOKEN DS 0CL16
SERVBLKA DS A

DS XL12
RETCODE DS F

IEANTASM INCLUDE NAME/TOKEN SERVICES X
ASSEMBLER DECLARATION STATEMENTS

Figure 3-12. Calling Sequence for a Basic PC Routine

Chapter 3. Synchronous Cross Memory Communication 3-25

Removing Access
The next two steps remove access to previously provided services. The steps must
be performed with the user’s address space as the home address space. These
steps are essentially the opposite of the steps used to establish access. First, the
service provider removes PT and SSAR authority to the user’s address space.
RESETAT ATSET AX=AXVALUE,PT=NO,SSAR=NO,RELATED=(SETAT)

The service provider then disconnects the entry table from the user’s linkage table.
DISET1 ETDIS TKLIST=TKL,RELATED=CONET

Cleaning Up
Before shutting down, the service provider must remove all cross memory
connections and release any cross memory resources it owns. After ensuring that
all connections to the entry table have been disconnected, the service provider
destroys the entry table.
DESET1 ETDES TOKEN=TKVALUE,RELATED=CET1

The service provider then frees the non-system LX so it will be available for reuse
(providing no other address space is connected to the LX).
FREELX LXFRE LXLIST=LXL,RELATED=LXRES

The service provider then resets the AX of its address space to zero.
SR 2,2 ZERO VALUE

RESETAX AXSET AX=(2),RELATED=LXRES RESET AX TO ZERO

Finally, the service provider frees the AX so the system can reuse it. Freeing the AX
removes PT and SSAR authority corresponding to the service provider’s AX in all
authority tables in the system.
FREEAX AXFRE AXLIST=AXL,RELATED=GETAX

Exampl e 2 - Making Services Available to All Address Spaces
This example shows how a service provider makes services available to all users.
The example uses the same storage areas as Example 1 (see Figure 3-7 on page
3-19 for the storage areas used); however, it does not need the AX list. The main
difference between Example 1 and Example 2 is Example 2’s use of a system LX
and an AX value of 1. A system LX allows the service provider to connect an entry
table to all address spaces, and the AX gives the service provider PT and SSAR
authority to all address spaces.

Note: Do not use a system LX unless your service is intended for all address
spaces. Establishing a system LX makes the ASID of the address space
unusable until the next IPL. For more information about ASID reuse, see
“Reusing ASIDs” on page 3-38.

Setting Up
The service provider first obtains a system LX. MVS sets aside part of the available
LXs for use as system LXs. When the service provider connects an entry table to a
system LX, the entry table is connected to all present and future address spaces.

Unlike a non-system LX, a system LX cannot be freed for reuse. When an address
space that owns a system LX terminates, the LX becomes dormant. The system
allows a dormant system LX to be reconnected to an address space different from
the original owning address space. This is an important consideration for a service
provider that can be terminated and then restarted. The service provider must have

3-26 z/OS V1R3.0 MVS Extended Addressability Guide

a way to remember the system LX it owned so that it can connect the LX to an
entry table when it is restarted. See “Reusing LXs” on page 3-40 for more
information.

In the example, the service provider would first test LXVALUE. If LXVALUE was
zero, the service provider would issue the LXRES macro. Otherwise the service
provider would pass the value found in LXVALUE to the ETCON macro.

To obtain a system LX, the service provider issues the LXRES macro with the
SYSTEM=YES option.

The code shown in the following three steps runs with the service provider’s
address space as the home address space. The first step obtains a system LX. If
the service provider’s address space is coming up for the first time since IPL, the
service provider issues the LXRES macro with the SYSTEM=YES option. The
service provider must then save the LX somewhere, probably in common storage,
so it is accessible if the service provider is restarted.

LA 2,1
ST 2,LXCOUNT REQUEST 1 SYSTEM LX

GETSLX LXRES LXLIST=LXL,SYSTEM=YES

The service provider then sets its address space AX to a value of 1. An AX value of
1 authorizes the service provider to issue a PT or SSAR instruction to all other
address spaces. (Because the service provider is providing a service to all users,
the service provider does not need to obtain a unique AX.)

LA 2,1
AXSET AX=(2)

The service provider then issues the ETCRE macro to create the entry table.
ETCRE ENTRIES=ETDESC
ST 0,TKVALUE SAVE THE ET TOKEN

The service provider can construct the PC numbers and make them accessible the
same way it did in “Example 1 - Making Services Available to Selected Address
Spaces” on page 3-19.

Establishing Access
To connect the entry table to the linkage table in each current and future address
space, the service provider issues the ETCON macro. In this case, the service
provider can issue the ETCON macro from any address space.

LA 2,1
ST 2,TKCOUNT SET COUNT OF ETS TO BE CONNECTED
ETCON LXLIST=LXL,TKLIST=TKL

All address spaces in the system now have access to the service provider’s
services. Figure 3-13 shows how the linkage and entry tables appear at this point.

Chapter 3. Synchronous Cross Memory Communication 3-27

Providing Service
The service provider supplies services in the same way as in Example 1. The users
of the services must be aware of the PC number associated with each service.

Removing Access
To remove access, the service provider disconnects all users and destroys the entry
table by issuing the ETDES macro with the PURGE=YES option. This disconnects
the entry table from all linkage tables in the system and then destroys it. For
information about how the system reuses the system LX, see “Reusing LXs” on
page 3-40. (ETDIS cannot be used to disconnect an entry table that is connected to
a system LX.)

ETDES TOKEN=TKVALUE,PURGE=YES

Cleaning Up
Finally, the service provider sets the AX of its address space to 0.

SR 2,2
AXSET AX=(2)

Exampl e 3 - Providing Non-Space Switch Services
This example is similar to “Example 1 - Making Services Available to Selected
Address Spaces” on page 3-19 except the service provider will provide only
non-space switch PC routines. The service provider code will be the same as in
example 1 or 2 with the following exceptions:
v The ETDEF macros that define PC routines will all specify SSWITCH=NO.
v The service provider will not issue the AXRES, AXSET, or ATSET macros.

PC Linkages and PC Routine Characteristics
When a user issues a PC instruction, the system transfers control to a PC routine.
An entry in the service provider’s entry table defines the PC routine that is to
receive control. Data in this entry also determines the type of linkage the system
will use to invoke the PC routine. The types of linkages are stacking and basic.

The stacking and basic PC linkages share some common capabilities. The stacking
linkage, however, offers more capability and provides better performance than does
the basic linkage. The service provider uses the PC parameter on the ETDEF
macro to define the type of linkage that will be used. Stacking is the default. IBM
recommends the use of the stacking PC linkage. This book refers to a PC routine
as either a stacking PC routine or a basic PC routine depending on the linkage
used to invoke the routine.

ETE for Service 1

ETE for Service 2

invalid

invalidET
SS

EX=0

EX=1

EX=2

EX=3

ET
SS

LT

LX
SS

ET
SS

LT
1 n

Figure 3-13. Linkage and Entry Tables for a Global Service

3-28 z/OS V1R3.0 MVS Extended Addressability Guide

PC Linkage Capabilities
The stacking PC linkage and the basic PC linkage provide the following capabilities:

v The PC routine’s PKM authority can be increased.

v Basic PC routines must receive control in primary mode; stacking PC routines
have the option to do so.

v Basic PC routines must receive control with SASN=old PASN; stacking PC
routines have the option to do so.

v The PC routine can receive control in either problem state or supervisor state.

v The PC routine can be either a space switch routine or a non-space switch
routine.

The stacking PC linkage also provides the following additional capabilities that the
basic PC linkage does not provide:

v The PC routine’s PKM authority can be decreased.

v The PC routine’s PSW key can be set from data in the entry table.

v The PC routine can receive control in AR mode.

v An entry point to an associated recovery routine (ARR) can be defined in the
entry table.

v The system automatically uses the linkage stack to save and restore the user’s
environment.

Defining a PC Routine
When you define a PC routine, you define its operating characteristics and its
environment. Several definitions apply to both basic and stacking PC routines.
Other definitions apply to stacking PC routines only.

For each PC routine, you must specify the type of linkage, basic or stacking, that
the system is to use when a user invokes the routine. IBM recommends that you
use only the stacking linkage. To define the type of linkage, use the PC keyword on
the ETDEF macro.

Note: If you currently provide basic PC routines, you may continue to use these
basic PC routines without change.

All of the information that you provide to define a basic PC routine you also provide
to define a stacking PC routine. There is also additional information that you can
provide for stacking PC routines only. The topic “Definitions Common to Both
Stacking and Basic PC Routines” explains how to provide the definitions common to
both types of PC routines. The topic “Definitions for Stacking PC Routines Only” on
page 3-31 explains how to provide the definitions that apply to stacking PC routines
only.

Definitions Common to Both Stacking and Basic PC Routines
The PC routine definitions explained in this topic apply to both stacking and basic
PC routines. For each PC routine you must define:

v Whether the PC routine will receive control in supervisor state or problem state

v Whether the PC routine is a space switch routine or a non-space switch routine

v The PSW key-mask (PKM) that a problem state program must have in order to
invoke the PC routine

v The addressing mode of the PC routine if you specified the ROUTINE parameter
on the ETDEF macro

Chapter 3. Synchronous Cross Memory Communication 3-29

v Whether the PC routine will run under the user’s PSW-key mask or under a
different PSW-key mask

Supervisor State or Problem State: A PC routine can receive control in either
supervisor state or problem state. A PC routine must receive control in supervisor
state if:

v The PC routine uses system services that are available only to programs that run
in supervisor state. An example of such a service is the PCLINK macro.

v The PC routine can be invoked by a basic PC issued from a program that runs in
supervisor state. This requirement exists because the system does not allow a
basic PC routine that receives control in problem state to issue the PT instruction
to return to a program that runs in supervisor state.

Otherwise, the PC routine can run in problem state.

To specify whether a PC routine receives control in supervisor state or in problem
state, use the STATE parameter on the ETDEF macro. The default is to receive
control in problem state.

Space Switch or Non-space Switch: You can define a PC routine as either a
space switch routine or a non-space switch routine. When making this decision,
consider the nature of the PC routine and the data it manipulates.

Use a non-space switch PC routine if the PC routine must support problem state
callers and must run in supervisor state in the caller’s address space. If you do not
have these requirements, you can use a space switch routine, which has certain
advantages. A space switch routine:
v Provides code isolation
v Allows you to access data in multiple address spaces
v Prevents you from having to place your code in common storage.

To define a PC routine as either a space switch or non-space switch routine, specify
the SSWITCH parameter on the ETDEF macro. The default is to define the routine
as a non-space switch routine.

Problem State Program Authorization: You can specify the PSW key mask
(PKM) that a problem state program must be running under in order to invoke a PC
routine. When a program in problem state issues a PC instruction, the system uses
the program’s PKM and the PC routine’s authorization key mask (AKM) to
determine whether the program is authorized to invoke the PC routine. If any bit in
the program’s PKM is on and the corresponding bit in the AKM is also on, the
program is authorized and the system invokes the PC routine. Otherwise, the
system disallows the invocation.

To define the AKM, specify the AKM parameter on the ETDEF macro.

Addressing Mode: A PC routine can receive control in either 24-bit addressing
mode or 31-bit addressing mode. If you specify the ROUTINE parameter on the
ETDEF macro, you can specify RAMODE on ETDEF to indicate the PC routine’s
addressing mode. If you specify the PROGRAM parameter on ETDEF, then the
system locates the PC routine and determines its addressing mode. The default is
to pass control to the PC routine in 31-bit addressing mode.

PSW-key Mask (PKM): You can specify the PKM that a PC routine is to run
under. The PKM, which has meaning only for PC routines that run in problem state,
defines:

3-30 z/OS V1R3.0 MVS Extended Addressability Guide

v The PSW-key values that the PC routine can set by means of the MODESET
macro or the SPKA instruction

v Whether the PC routine is authorized to use the MVCK, MVCS, and MVCP
instructions

v Other PC routines that the PC routine can invoke

Basic PC routines and stacking PC routines can run under the user’s PKM, or they
can run under a PKM that provides greater authority than does the user’s PKM. The
EKM and PKM parameters on the ETDEF macro enable you to define the PKM the
PC routine will run under.

If the user’s PKM provides sufficient authority for the PC routine, use the user’s
PKM by omitting the EKM parameter from the ETDEF macro.

If the PC routine needs more authority than the user has, use the EKM parameter
to increase the authority. You must also omit the PKM parameter or specify
PKM=OR. When you specify PKM=OR or omit PKM, the system determines the
PKM authority for the PC routine by ORing the caller’s PKM value with the EKM
value.

For a stacking PC routine only, you can decrease authority or define a new
authority. You do this by defining the authority in the EKM value and specifying
PKM=REPLACE. Specifying PKM=REPLACE causes the system to use the EKM
value as the new PKM value for the PC routine.

Definitions for Stacking PC Routines Only
In addition to the previously discussed definitions, for each stacking routine you can
define:
v The ASC mode of the PC routine
v The PC routine’s extended authorization index (EAX)
v The value that SASN is to assume after the PC instruction executes
v The address of an associated recovery routine (ARR)
v The PSW key under which the PC routine is to execute

ASC Mode: A stacking PC routine can receive control in either primary address
space control (ASC) mode or in AR ASC mode. The ASC mode determines whether
the PC routine can use ARs. AR ASC mode is required to use ARs. The ASCMODE
parameter on the ETDEF macro determines the mode. The default is for the PC
routine to receive control in primary ASC mode.

Extended Authorization Index (EAX): A stacking PC routine can receive control
with the same extended authorization index (EAX) value as the user who issued the
PC instruction, or with a new EAX value. The EAX controls authorization for the PC
routine to use access list entries. To specify a new EAX, use the EAX parameter on
the ETDEF macro. The default is for the PC routine to use the user’s EAX. For
more information about the function of the EAX, see “Types of Access List Entries”
on page 5-11.

SASN Value: A stacking PC routine can receive control with the secondary
address space number (SASN) set to one of two values:

v SASN can equal the number of the user’s primary address space (the address
space from which the PC instruction was issued).

v SASN can equal the number of the service provider’s address space (the
address space where the PC routine executes)

Chapter 3. Synchronous Cross Memory Communication 3-31

The SASN parameter on the ETDEF macro determines the SASN value. The
default is for SASN to equal the number of the user’s primary address space.

Here are two examples of how you might use the SASN parameter:

v If the PC routine does not run in AR mode and you want to access data in the
user’s address space (by using the MVCP or MVCS instructions), specify
SASN=OLD. This will give the PC routine the authority it needs to issue those
two instructions.

v If you do not need or want the PC routine to have secondary authority to the
user’s address space, specify SASN=NEW.

Associated Recovery Routine (ARR): A stacking PC routine can identify an ARR
that is to receive control if the PC routine encounters an error. An ARR enables a
stacking PC routine to avoid the overhead of defining and activating a recovery
routine each time it’s invoked. See the section on providing recovery in z/OS MVS
Programming: Authorized Assembler Services Guide for more information about
ARRs.

PSW Key: By default, a PC routine runs under the caller’s PSW key. You have the
option to run under a different key. To specify a different PSW key, use the EK
parameter on the ETDEF macro.

PC Routine Requirements
All PC routines must meet certain requirements depending on the type of PC
routine, stacking or basic.

Stacking PC Routines
Stacking PC routines must meet the following requirements:

v They must not use the checkpoint/restart facility.

v They must be either permanently resident in LPA or the nucleus, or they must be
loaded under the job step task of the address space that created the entry table.

v They must issue the PR instruction to return control to the user.

v Stacking PC routines that cause a space switch must:
– Run in an address space that is non-swappable
– Use only those MVS services that are supported in cross memory mode.

Basic PC Routines
Basic PC routines must meet the following requirements:

v They must not use the checkpoint/restart facility.

v They must be either permanently resident in LPA or the nucleus, or they must be
loaded under the job step task of the address space that created the entry table.

v They must use the PCLINK macro or provide code to save and restore the user’s
environment.

v They must use the PT instruction to return control to the user.

v Basic PC routines that cause a space switch must:
– Run in an address space that is non-swappable
– Use only those MVS services that are supported in cross memory mode.

Linkage Conventions
There are linkage conventions that user programs must observe and linkage
conventions that PC routines must observe. These conventions vary depending on
the type of PC linkage used, basic or stacking, and the ASC mode of the programs.

3-32 z/OS V1R3.0 MVS Extended Addressability Guide

For basic PC routines, receiving control in supervisor state requires the use of
different conventions than does receiving control in problem state.

Basic PC
A basic PC routine receives control in primary mode and only from a user program
that’s running in primary mode. The PC routine can receive control in either
problem state or in supervisor state. In order to return control to the user’s program,
the PC routine must save the user’s environment. Before issuing the PT instruction
to return to the user, the PC routine must restore the previously saved environment.

User Program: Before issuing a PC instruction, the user’s program must:

v Save general registers 14 through 12 at the location starting at offset 12 (word 4)
in the save area pointed to by general register 13. The program must save
registers before issuing a PC instruction because the basic PC linkage updates
general registers 3, 4, and 14. As a result of the update, the address space
where the save area resides might no longer be the currently addressable
address space.

v Save the current SASID in bits 16-31 of save area word 5.

v Optionally load general registers 0, 1, and 15 as parameter registers.

v Load general register 2 with the PC number.

v Issue the PC instruction specifying general register 2.

When the PC routine returns control to the user’s program, the user’s program must
restore its general registers and its secondary address space identifier (SASID).

PC Routine That Receives Control In Supervisor State: A basic PC routine that
receives control in supervisor state can use the PCLINK macro to save and restore
the user’s environment. Although the use of PCLINK is optional, IBM recommends
its use. A PC routine that does not use the PCLINK macro must provide a method
of saving and restoring the users environment.

The PCLINK STACK macro saves the following information:

v Caller’s save area address from caller’s general register 13

v AMODE, return address, and PSW problem state bit from caller’s general register
14

v Parameter registers: general registers 0, 1, and 15

v Caller’s PSW key and other information from caller’s general register 2 as
follows:

In bits 0-23, bits 8-31 of caller’s general register 2
In bits 24-27, PSW key
In bits 28-31, zeroes

v Caller’s PSW key mask and PASID from caller’s general register 3

v Latent parameter list address for this entry from caller’s general register 4

v Return address from the PCLINK service routine to the program that issued
PCLINK STACK. This point is just after the PC routine entry point.

v Program mask from current PSW.

After issuing PCLINK STACK, the PC routine can begin processing. If necessary,
the PC routine can use the PCLINK macro with the EXTRACT option to get
information from the PCLINK stack.

When the PC routine is ready to return control to the user’s program, the PC
routine must load into general registers 0, 1, and 15 any data to be returned to the

Chapter 3. Synchronous Cross Memory Communication 3-33

user. The PC routine can then issue PCLINK with the UNSTACK,THRU option. This
option restores general registers 3, 13, 14, the program mask and, optionally, the
original PSW protection key. The PC routine can then issue the PT instruction to
return control.

For information about coding the PCLINK macro, see z/OS MVS Programming:
Authorized Assembler Services Reference LLA-SDU.

PC Routine That Receives Control In Problem State: A basic PC routine that
receives control in problem state must provide a method for saving and restoring
the user’s environment. The PC routine cannot use the PCLINK macro because
that macro works only in supervisor state. IBM recommends that a PC routine that
receives control in problem state use the stacking PC linkage.

Stacking PC
A stacking PC routine can receive control in either primary mode or AR mode. The
user program that issues the PC instruction can be in either primary mode or AR
mode. When the user’s program issues the PC instruction, the system saves the
user’s environment on the linkage stack. When the PC routine issues the PR
instruction to return to the user, the system restores the user’s environment from
the stack before returning control. Thus, there is no need for the caller or the PC
routine to either save or restore the environment. The system saves the caller’s
general registers (0 - 15), ARs (0 - 15), PASN, SASN, PKM, and PSW. If necessary,
the PC routine can issue the extract stacked state instruction (ESTA) to examine
the stacked entry.

User in Primary Mode: A user program that’s running in primary mode can invoke
a PC routine that receives control in either primary mode or AR mode. Any
addresses that the user program passes must be located within the user’s primary
address space. The user must not use ARs to pass parameter values or addresses.
Before issuing a PC instruction, the user must:

v Load the PC number into general register 14.

v If there is a parameter list to pass, load its address into general register 1.

When the PC routine returns control, GPRs 2 - 13 and ARs 2 - 13 are restored to
their original values. GPRs 0, 1, and 15, and ARs 0, 1, and 15 contain the values
that were in them when the PC routine issued the PR instruction. GPR 14 and AR
14 are used as work registers by the system.

User In AR Mode: A user program that’s running in AR mode can invoke a PC
routine that receives control in either AR mode or primary mode.

v If the PC routine receives control in AR mode:

Parameter lists that the user passes can be located in the user’s primary address
space or any other address space except the user’s secondary address space.
An ALET must qualify any address that the user passes to the PC routine (An
ALET identifies the address space that contains the passed address). An address
passed in a general register must be qualified by an ALET in the AR that
corresponds to the general register. If you are passing ALETs, you should be
aware of the rules for passing ALETs, and how to check the validity of passed
ALETs. For further information on passing ALETs, see “Special ALET Values at a
Space Switch” on page 5-13, “Rules for Passing ALETs” on page 5-18, and
“Checking the Authority of Callers” on page 5-31.

The user must not use ARs to pass anything except ALETs. For information on
using ALETs, see Chapter 5, “Using Access Registers” on page 5-1.

v If the PC routines receives control in primary mode:

3-34 z/OS V1R3.0 MVS Extended Addressability Guide

All addresses passed by the user’s program must reside in the user’s primary
address space. IBM recommends that those addresses be ALET qualified. The
value of the ALET must be 0.

Before issuing a PC instruction, the user must:

v Load the PC number into general register 14.

v If there is a parameter list to pass, load its address into general register 1. If the
address is ALET qualified, load AR 1 with the ALET.

For more information about using ARs, see Chapter 5, “Using Access Registers” on
page 5-1.

PC Routine That Receives Control In Primary Mode: After receiving control, the
PC routine must establish a general register as a base register. The PC routine
must also initialize general register 13:

v If the PC routine calls other routines, the PC routine must initialize general
register 13 to the address of an 18-word save area that’s located on a word
boundary in the PC routine’s primary address space. The PC routine must
initialize the second word of the save area to the value C‘F1SA’. The value
C‘F1SA’ indicates that the system saved the user’s environment on the linkage
stack. IBM recommends that all PC routines that receive control in primary
mode initialize general register 13 in this way.

v A PC routine that does not call other routines and does not wish to provide an
18-word save area must initialize general register 13 to one of the following
values.

– Zero.

– The address of a two word save area that’s located on a word boundary in
the PC routine’s primary address space. The PC routine must initialize the
second word of the area to the value C‘F1SA’.

Either value, zero or C‘F1SA’, in general register 13 indicates that the system
saved the user’s environment on the linkage stack.

Addressability to the latent parameter area is through the primary address space.
When the PC routine receives control, general register 4 contains the address of
the latent parameter area.

Before returning control to the user, the PC routine must:
v Free any save area or work area it obtained.
v If there are parameters to pass, place their address into general register 0 or 1.
v If there is a return code, place it into general register 15.

To restore the user’s environment and to return control, the PC routine must issue
the PR instruction.

PC Routine That Receives Control In AR Mode: After receiving control, the PC
routine must establish addressability by loading a base register. The PC routine
must also load an ALET of 0 into the AR that corresponds to the base register.

Addresses that the caller passes to the PC routine must be qualified by an ALET.
Before using an ALET, the PC routine must check the ALET:

v If the caller passes an ALET of 0, a space switch PC routine for which
SASN=OLD has been specified must change the ALET to 1 before using it.

Chapter 3. Synchronous Cross Memory Communication 3-35

v If the caller passes other ALETs, the PC routine must use them to qualify
addresses that the caller has passed.

v The PC routine must never use an ALET of 1 that the caller has passed. If a
caller passes an ALET of 1, the PC routine might, for example, set an error
return code and return to the caller.

Addressability to the latent parameter area is through the primary address space.
When the PC routine receives control, general register 4 contains the address of
the latent parameter area. Before referencing the latent parameter area, the PC
routine must set AR 4 to a value of 0.

Before returning control to the user, the PC routine must do the following:

v If there are parameters to pass, place the address of the parameters into general
register 0 or 1 and the ALET the caller will use to address the data into the
corresponding AR. Remember that the address of any data in the caller’s
address space is qualified by an ALET of 0 for the caller, but an ALET of 1 for
the PC routine if SASN=OLD. When passing the ALET to qualify the address of
data in the caller’s address space, IBM recommends that the PC routine pass
an ALET of 0 rather than depending on the caller to change the ALET from 1 to
0.

v If there is a return code, place it into general register 15.

To restore the caller’s environment and return control, the PC routine must issue the
PR instruction.

The examples in Figure 3-14 on page 3-37 compare the linkage conventions for the
basic PC (first example) to the conventions for the stacking PC (second example).
Both the user program and the PC routine are in primary mode.

3-36 z/OS V1R3.0 MVS Extended Addressability Guide

If the PC routine is in AR mode, the following is an example of the instructions you
can use to establish addressability:
BALR 6,0
USING *,6
SLR 7,7
SAR 6,7

See Chapter 5, “Using Access Registers” on page 5-1 for information about being in
AR mode and manipulating the contents of ARs.

Resource Management
IBM recommends that a program running under the job step task, rather than
under a subtask of the job step task, acquire and release these cross memory
resources: AXs, EAXs, LXs, authority tables, and entry tables. Likewise, the same
program should load the PC routines.

During normal termination, the program that obtained cross memory resources
should release those resources. If this is not done, however, MVS releases these
resources during termination of the job step task.

When the job step task of an address space terminates, MVS eliminates any cross
memory connections between the terminating address space and other address
spaces. After these connections are eliminated:

v Programs executing in other address spaces cannot access the terminating
address space through a PT, SSAR, or PC instruction.

User PC Routine
...
*
* BASIC PC LINKAGE
*
STM 14,12,12(13)
ESAR 2
ST 2,16(,13)
L 2,PCNUMBER
PC 0(2)
L 2,16(,13)
SSAR 2
LM 2,12,28(13)...

BALR 6,0
PCLINK STACK...
PCLINK UNSTACK
PT 3,14

User PC Routine

.

.
*
* STACKING PC LINKAGE
*
L 14,PCNUMBER
PC 0(14)

.

BALR 6,0...
PR

Figure 3-14. Comparing Basic and Stacking PC Linkage Conventions

Chapter 3. Synchronous Cross Memory Communication 3-37

v Programs executing in other address spaces cannot use ARs to access the
terminating address space.

v Subsequent job steps can execute but cannot obtain cross memory resources. If
such a job step issues an LXRES, AXRES, or ETCRE macro, the system returns
an X’052’ abend code.

Reusing ASIDs
The system assigns an ASID to an address space when the address space is
created. A limited number of ASIDs are available for the system to assign. When all
ASIDs are assigned to existing address spaces, the system is unable to start a new
address space. This condition might be the result of too many lost ASIDs in the
system. A lost ASID is one that is associated with an address space that has
terminated, but because of the address space’s cross memory connections, the
system does not reuse the ASID. In effect, the ASID is “lost from use” for the
duration of the IPL, or until all connected address spaces have terminated.

This section tells you two ways to reduce the possibility that the system will run out
of ASIDs for assignment to new address spaces. One is through coding cross
memory services to avoid losing ASIDs and the second is through the installation’s
use of parameters in the IEASYSxx member of SYS1.PARMLIB.

Coding Cross Memory Services to Avoid the Loss of ASIDs from
Reuse
As you code cross memory services, try whenever possible to allow the ASID of an
address space to be free for reuse at address space termination. To do this, you
need to know the circumstances under which the system does not reuse an ASID.
When an address space terminates, the system considers reusing the ASID that is
associated with that address space. Whether the ASID is available for reuse
depends on the cross memory connections that have been established between
that address space and other address spaces.

An ASID is unavailable for reuse when the address space owns entry tables that
contain space switch entries (created through SSWITCH=YES on the ETDEF
macro), and when one of the following is true:

v Those tables connect to other address spaces through a non-system LX
(created through SYSTEM=NO on the LXRES macro), in which case the ASID is
not eligible for reuse until all connected address spaces terminate

v Those tables connect to other address spaces through a system LX , in which
case the ASID is not eligible for reuse for the duration of the IPL.

The ASID of an address space with no entry tables, or with entry tables that contain
only non-space switch entries (created through SSWITCH=NO on the ETDEF
macro), is available for reuse when the address space terminates.

For an example of ASID reuse, see Figure 3-15 on page 3-39, which describes the
cross memory relationships between four address spaces. Address spaces A, B,
and C own entry tables with space switch entries. Address space B is a server
address space. It has a system LX; its PC routines are available to all address
spaces. Address spaces A and C have non-system LXs; their PC routines are
available to selected address spaces. Address space D owns no entry tables.

3-38 z/OS V1R3.0 MVS Extended Addressability Guide

To maintain the integrity of an address space, the system does not reuse an ASID
until all programs that could potentially access that address space have completed.
This means that the system reuses the ASIDs of the address spaces in the figure
as follows:
v A’s and B’s ASIDs are reusable only after a reIPL.
v C’s ASID is reusable after both C and D terminate.
v D’s ASID is reusable after D terminates.

A’s and B’s ASIDs are the lost ASIDs. Because programs in all address spaces
potentially have the ability to transfer control to address space B, and programs in
B can transfer control to address space A, A’s and B’s ASIDs are not reusable
within an IPL. (Consider the consequences of the system reusing A’s ASID at
termination of A. Then, a program in B could pass control to code running in the
address space that received the reused ASID.)

Connecting an entry table with space-switch entries through a non-system LX to a
system address space or a long-running address space (such as VTAM, CICS,
DB2, or JES) makes the ASID of the owner of the entry table non-reusable.
Therefore, to avoid unnecessary loss of ASIDs, IBM recommends that you follow
these rules:

v Use system LXs only when the cross memory service is to be used by all
address spaces and the cross memory service provider is a long-running address
space

v Avoid connecting non-system LXs to long-running address spaces.

A

B
LXRES with

non-system LX
ETCRE A

ETCON to A
LXRES with

system LX
PC routine
defined in
ETDEF with
SSWITCH=YES

C

D
LXRES with

non-system IX
ETCRE C

ETCON to C
PC routine
defined in
ETDEF with
SSWITCH=YES

PC

PC

PC routine
defined in
ETDEF with
SSWITCH=YES

PC

Figure 3-15. Cross Memory Connections between Address Spaces

Chapter 3. Synchronous Cross Memory Communication 3-39

Using IEASYSxx to Avoid Running Out of ASIDs
A second way you can reduce the possibility that the system will run out of ASIDs is
to reserve ASIDs through the RSVNONR and RSVSTRT parameters in the
IEASYSxx member of SYS1.PARMLIB. The reserved ASIDs replace those lost due
to cross memory activity. See z/OS MVS Initialization and Tuning Reference for
more information about specifying those parameters.

Reusing LXs
The limits on the number of LXs is 2048. Some of the LXs are reserved as system
LXs; the rest are available as non-system LXs. Use the LXRES macro with
SYSTEM=YES to obtain a system LX; with SYSTEM=NO to obtain a non-system
LX. The rule for the reuse of a system LX is simple: the system does not reassign
it. The original requester of the LX can choose to reconnect to the LX should the
address space terminate and then restart. You can use the NSYSLX parameter in
the IEASYSxx member of SYS1.PARMLIB to increase or decrease the number of
system LXs available for the system’s use.

The system considers reusing a non-system LX when all entry tables are
disconnected from the LX. This is the case when an address space that owns a
non-system LX terminates or when the owner of the non-system LX uses ETDIS to
disconnect all entry tables from the LX and uses LXFRE to free the LX. In the
example in Figure 3-15 on page 3-39, assume that all entry tables are disconnected
by the system during address space termination. This means the system reuses
non-system LXs as follows:
v A’s non-system LX is reusable when A and B terminates
v C’s non-system LX is reusable when C and D terminates

Again referring to Figure 3-15 on page 3-39, assume that address space B issues
ETDIS to disconnect from A’s LX and A issues LXFRE to free its non-system LX.
After these two actions complete, A’s LX is available for reuse. If B had not
disconnected from A’s LX, the LX would not be available for reuse until both A and
B terminate.

Reusing AXs and EAXs
The combined number of AXs and EAXs available for all programs in the system is
16382. When an address space that owns AXs terminates or when the AXs are
explicitly freed through AXFRE, those AXs are available for the system to reassign.

The system reuses EAXs in the same way it reuses ASIDs. The system does not
reuse an EAX until all programs that could potentially access the address space
have completed. In the example in Figure 3-15 on page 3-39, assume that A owns
an EAX in the entry table connected to B, and B owns an EAX in an entry table
connected to all address spaces (because B has a system LX), and C owns an
EAX in the entry table connected to D. In this example, the system reuses the
EAXs as follows:

v A’s EAX is reusable only after a reIPL (because A connected to B, which owns a
system LX).

v B’s EAX is reusable only after a reIPL (because B owns a system LX).

v C’s EAX is reusable after both C and D terminate.

PC Routine Loading Recommendations
MVS deletes PC routines when the task that loaded the PC routine terminates.
Therefore, IBM recommends that PC routines be loaded by a program running
under the job step task of the address space that creates and owns the PC entry

3-40 z/OS V1R3.0 MVS Extended Addressability Guide

tables. If the program that loads the PC routine is running under a task that’s
subordinate to the job step task and the subordinate task terminates, the PC routine
will be deleted from virtual storage. Cross memory connections to that PC routine
remain, however, until the job step task terminates. If a program issues a PC
instruction to invoke the deleted PC routine, the results will be unpredictable: a
program interrupt may occur or other random errors may occur if the virtual storage
previously occupied by the deleted program has been reused.

Accounting Considerations
CPU execution time for space switch PC routines is attributed to the home address
space of the work unit that invokes the PC routine. The PC routine execution time
is not attributed to the address space where the PC routine itself resides. For
example, address space A owns a space switching PC routine that is invoked by a
task whose home address space is B. When the task in B executes the PC routine
in space A, that CPU time is attributed to address space B.

Recovery Considerations
Space switch PC routines have special recovery considerations. A space switch PC
routine has active binds to address spaces other than home. If the PC routine tries
to access data in one of these address spaces after the address space has
terminated, the PC routine will incur a program check and its recovery routine might
get control. The SETFRR macro provides options that specify the cross memory
mode in which the recovery routine must get control. The ETDEF macro with the
ARR parameter and the ESTAEX macro also can define recovery routines for PC
routines in cross memory mode. However, these recovery routines are not protected
against memory terminations of associated address spaces.

There are also options that enable a recovery routine to get control as a resource
manager when the requested cross memory mode cannot be established in order to
recover resources serialized by local (CML) or global locks. For information on
recovery in cross memory mode, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Chapter 3. Synchronous Cross Memory Communication 3-41

3-42 z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 4. Using the 64-bit Address Space

This chapter describes how to use the address space virtual storage above 2
gigabytes and control the physical frames that back this storage.

What is the 64-bit Address Space?
Because of changes in the architecture that supports the MVS operating system,
there have been two different address spaces prior to the 64-bit address space. The
address space of the 1970s began at address 0 and ended at 16 megabytes. The
architecture that created this address space provided 24-bit addresses.

In the early 1980s, XA (extended architecture) was introduced with an address
space that began at address 0 and ended at two gigabytes. The architecture that
created this address space provided 31-bit addresses. To maintain compatibility,
MVS provided two addressing modes (AMODEs) for programs: programs that run in
AMODE 24 can use only the first 16 megabytes of the address space, and
programs that run in AMODE 31 can use the entire 2 gigabytes.

As of z/OS Release 2, the address space begins at address 0 and ends at 16
exabytes, an incomprehensibly high address. The architecture that creates this
address space provides 64-bit addresses. The address space structure below the 2
gigabyte address has not changed; all programs in AMODE 24 and AMODE 31
continue to run without change. In some fundamental ways, the address space is
much the same as the XA address space.

In the 31-bit address space, a virtual “line” marks the 16-megabyte address. The
64-bit address space also includes the virtual line at the 16-megabyte address;
additionally, it includes a second virtual line called the bar that marks the
2-gigabyte address. The bar separates storage below the 2-gigabyte address,
called below the bar , from storage above the 2-gigabyte address, called above the
bar . The area above the bar is intended for data; no programs run above the bar.
There is no area above the bar that is common to all address spaces, and no
system control blocks exist above the bar. IBM reserves an area of storage above
the bar for special uses to be developed in the future.

You can set a limit on how much virtual storage above the bar each address space
can use. This limit is called the MEMLIMIT. If you do not set an MEMLIMIT, the
system default is 0, meaning that no address space can use virtual storage above
the bar. If you want to use virtual storage above the bar, you need to set the
MEMLIMIT explicitly. You can set an installation default MEMLIMIT through SMF.
You can also set a MEMLIMIT for a specific address space in the JCL that creates
the address space or by using SMF exit IEFUSI. For information about how to set
MEMLIMIT explicitly, see “Limiting the Use of Memory Objects” on page 4-2.

Figure 4-1 on page 4-2 shows the z/OS R2 address space, including the line that
marks the 16-megabyte address and the bar that marks the 2-gigabyte address.

© Copyright IBM Corp. 1988, 2002 4-1

|
|

All programs start in AMODE 31 or AMODE 24; at that time, they are unable to
work with data above the bar. To use virtual storage above the bar, a program must
request storage above the bar, be in AMODE 64 and use the new z/Architecture
assembler instructions.

Why Would You Use Virtual Storage above the Bar?
The reason why someone designing an application would want to use the area
above the bar is simple: the program needs more virtual storage than the first
2-gigabyte address space provides. Before z/OS R2, a program’s need for storage
beyond what the former 2-gigabyte address space provided was sometimes met by
creating one or more data spaces or hiperspaces and then designing a memory
management schema to keep track of the data in those spaces. Sometimes
programs written before R2 used complex algorithms to manage storage, reallocate
and reuse areas, and check storage availability. With the 16-exabyte address
space, these kinds of programming complexities are unnecessary. A program can
potentially have as much virtual storage as it needs, while containing the data within
the program’s primary or home address space.

A good example of a programming model that can successfully take advantage of
the 16-exabyte address space is a program that needs very large buffer pools. This
program has typically used multiple data spaces and then managed them
separately and uniquely. With the 16-exabyte address space, a program can use
the area above two gigabytes for a buffer pool. A simple memory mapping scheme
is all that is needed to keep track of the data.

Limiting the Use of Memory Objects
While there is no practical limit to the virtual storage above the bar, there are
practical limits to the real storage frames and auxiliary storage slots that back that
area. To control the amount of real and auxiliary storage that an address space can
use for memory objects at one time, your installation can establish an installation

Figure 4-1. z/OS R2 Address Space

4-2 z/OS V1R3.0 MVS Extended Addressability Guide

default MEMLIMIT that sets the total number of usable virtual pages above the bar
for a single address space. You set this default on the MEMLIMIT parameter in the
SMFPRMxx parmlib member, or through the SET SMF or SETSMF commands.
This default takes effect if a job does not specify MEMLIMIT on the JOB or an
EXEC statement or REGION=0 in the JCL; the MEMLIMIT specified in an IEFUSI
exit routine overrides all other MEMLIMIT settings.

Figure 4-2 on page 4-4 shows how the system chooses which MEMLIMIT applies.

For more information:

v For the SMFPRMxx parameters that establish the installation defaults for
MEMLIMIT, see z/OS MVS Initialization and Tuning Reference.

v For the SETSMF or SET SMF commands that change the MEMLIMIT
dynamically and D SMF,O that displays the current MEMLIMIT, see z/OS MVS
System Commands.

v For the JOB and EXEC statements that can set a MEMLIMIT for a job or jobstep,
see z/OS MVS JCL Reference.

v For the SMF installation exit IEFUSI that can override the MEMLIMIT for a job or
an address space, see z/OS MVS Installation Exits.

The system enforces the MEMLIMIT when you issue the IARV64 GETSTOR and
CHANGEGUARD services. When your unconditional request for new storage (either
for a new memory object or for more usable storage in an existing memory object)
causes the MEMLIMIT to be exceeded, the system abends the program. IBM
recommends that programs use the COND parameter to make a conditional request
and check the return code to make sure the storage is available.

What happens to the MEMLIMIT for an already-created address space if a SET
SMF or SETSMF command changes the default MEMLIMIT (either the system
default or the installation default)?

v If the command raises the current default MEMLIMIT, all address spaces whose
MEMLIMIT was set through SMF run with the higher default.

v If the command lowers the current default MEMLIMIT, all address spaces whose
MEMLIMIT was set through SMF keep their original (higher) system default.

A SET SMF or SETSMF command cannot change the MEMLIMIT value set through
JCL or by an IEFUSI installation exit.

Chapter 4. Using the 64-bit Address Space 4-3

Figure 4-2. How the System Chooses which MEMLIMIT Applies

4-4 z/OS V1R3.0 MVS Extended Addressability Guide

Memory Objects
Programs obtain storage above the bar in “chunks” of virtual storage called
memory objects . The system allocates a memory object as a number of virtual
segments; each segment is a megabyte in size and begins on a megabyte
boundary. A memory object can be as large as the memory limits set by your
installation and as small as one megabyte. Other attributes of a memory object
include the following:

v The storage key is defined by the program; for an unauthorized program, the
storage key at the time of issuing IARV64 is the program’s PSW key.

v The fetch protection attribute is set by the program.

v The owner of a memory object is the TCB of the program that creates the
memory object, or a TCB to which the creating program assigns ownership. If an
SRB creates a memory object, the SRB must assign ownership of the memory
object to a task.

Using the IARV64 macro, a program can create and free a memory object and
manage the physical frames that back the virtual storage. You can think of IARV64
as the GETMAIN/FREEMAIN or STORAGE macro for virtual storage above the bar.
(GETMAIN/FREEMAIN and STORAGE do not work on virtual storage above the
bar; neither do CPOOL or callable cell pool services.)

When a program creates a memory object, it provides an area in which the system
returns the memory object’s low address. You can think of that address as the
name of the memory object. After creating the memory object, the program can use
the storage in the memory object much as it used storage in the 2-gigabyte address
space; see “Using a Memory Object” on page 4-14. The program cannot safely
operate on storage areas that span more than one memory object.

An authorized program can ask the system to pagefix areas of memory objects,
making pages unavailable for stealing. The program specifies the ranges of pages
that the system is to fix. Later, the program can undo the pagefix operation.

To help the system manage the physical pages that back ranges of addresses in
memory objects, a program can alert the system to its use of some of those pages,
making them available for the system to steal and then return.

The program can free the physical pages that back ranges of memory objects and,
optionally, clear those ranges to zeros. Later, the program can ask the system to
return the physical backing from auxiliary storage. When it no longer needs the
memory object, the program frees it in its entirety.

While your program can obtain only one memory object at a single invocation of
IARV64, it can, for management purposes, relate a set of two or more memory
objects to each other by specifying a user token , a value you choose. A program
can then delete all memory objects that have the same user token value.

Using Assembler Instructions in the 64-bit Address Space
With z/Architecture, two facts are prominent: the address space is 16 exabytes in
size and the general purpose registers (GPRs) are 64 bits in length. You can ignore
these facts and continue to use storage below the bar. If, however, you want to
enhance old programs or design new ones to use the virtual storage above the bar,
you will need to use the new Assembler instructions. This section introduces the
concepts that provide context for your use of these instructions.

Chapter 4. Using the 64-bit Address Space 4-5

z/Architecture provides two new major capabilities that are related but are also
somewhat independent:

v 64-bit binary operations

v 64-bit addressing mode (AMODE).

64-bit Binary Operations
64-bit binary operations perform arithmetic and logical operations on 64-bit binary
values. 64-bit AMODE allows access to storage operands that reside anywhere in
the 16-exabyte address space. In support of both, z/Architecture extends the GPRs
to 64 bits. There is a single set of 16 64-bit GPRs, and the bits in each are
numbered from 0 to 63.

All S/390 instructions are carried forward into z/Architecture and continue to operate
using the low-order half of the z/Architecture 64-bit GPRs. That is, an S/390
instruction that operates on bit positions 0 through 31 of a 32-bit GPR in S/390
operates instead on bit positions 32 through 63 of a 64-bit GPR in z/Architecture.
You can think of the S/390 32-bit GPRs as being imbedded in the new 64-bit GPRs.

Throughout the discussion of GPRs, bits 0 through 31 of the 64-bit GPR are called
the high-order half , and bits 32 through 63 are called the low-order half .

The purpose of this section is help you use the 64-bit GPR and the 64-bit
instructions as you want to save registers, perform arithmetic operations, access
data. It is not a tutorial about how to use the new instruction set. Principles of
Operation is the definitive reference book for these instructions. This section,
however, describes some concepts that provide the foundation you need. After you
understand these, you can go to Principles of Operation and read the introduction
to z/Architecture that appears in the first chapter and then refer to the specific
instructions you need to write your program.

How z/Architecture Processes S/390 Instructions
First of all, your existing programs work, unchanged, in z/Architecture mode. This
section describes how z/Architecture processes S/390 instructions. The best way to
describe this processing is through examples of common S/390 instructions. First,
consider a simple Add instruction: A R3,NUM31. This instruction takes the value of
a fullword binary integer at location NUM31 and adds it to the contents of the
low-order half of GPR3, placing the sum in the low-order half of GPR3. The
high-order half of GPR3 is unchanged.

4-6 z/OS V1R3.0 MVS Extended Addressability Guide

Second, consider the LOAD instruction: L R3,MYDATA. This instruction takes the 4
bytes of data at location MYDATA and puts them into the low order bits of GPR3.

The high-order half is not changed by the ADD instruction or the LOAD instruction.
The register forms of these instructions (AR and LR) work similarly, as do Add
Logical instructions (AL and ALR).

z/Architecture Instructions that Use the 64-bit GPR
z/Architecture provides many new instructions that use two 64-bit binary integers to
produce a 64-bit binary integer. These instructions include a “G” in the instruction
mnemonic (AG and LG). Some of these instructions are similar to S/390
instructions. Consider the example of an Add G instruction: AG R3,NUM64. This
instruction takes the value of a doubleword binary integer at location NUM64 and
adds it to the contents of GPR3, placing the sum in GPR3:

The second example, LG R3,TWOWORDS, takes a doubleword at location
TWOWORDS and puts it into GPR3.

Because 32-bit binary integers are prevalent in S/390, z/Architecture also provides
instructions that use a 64-bit binary integer and a 32-bit binary integer. These
instructions include a “GF” in the instruction mnemonic (AGF and LGF). Consider
AGF. In AGF R3,MYDATA, assume that MYDATA holds a 32-bit positive binary
integer, and GPR3 holds a 64-bit positive binary integer. (The numbers could have
been negative.) The AGF instruction adds the contents of MYDATA to the contents
of GPR3 and places the resulting signed binary integer in GPR3; the sign
extension, in this case, is zeros.

Chapter 4. Using the 64-bit Address Space 4-7

The AGFR instruction adds the contents of the low-order half of a 64-bit GPR to bits
0 through 63 in another 64-bit GPR. Instructions that include “GF” are very useful
as you move to 64-bit addressing.

64-bit Addressing Mode (AMODE)
When generating addresses, the processor performs address arithmetic; it adds
three components: the contents of the 64-bit GPR, the displacement (a 12-bit
value), and (optionally) the contents of the 64-bit index register. Then, the processor
checks the addressing mode and truncates the answer accordingly. For AMODE 24,
the processor truncates bits 0 through 39; for AMODE 31, the processor truncates
bits 0 through 32; for AMODE 64, no truncation (or truncation of 0 bits) occurs. In
S/390 architecture, the processor added together the contents of a 32-bit GPR, the
displacement, and (optionally) the contents of a 32-bit index register. It then
checked to see if the addressing mode was 31 or 24 bits, and truncated
accordingly. AMODE 24 caused truncation of 8 bits, AMODE 31 caused a truncation
of bit 0.

The addressing mode also determines where the storage operands can reside. The
storage operands for programs running in AMODE 64 can be anywhere in the
16-exabyte address space, while a program running in AMODE 24 can use only
storage operands that reside in the first 16 megabytes of the 16-exabyte address
space.

Non-Modal Instructions
An instruction that behaves the same, regardless of the AMODE of the program, is
called a non-modal instruction. The only influence AMODE exerts on how a
non-modal instruction performs is where the storage operand is located. Two
excellent examples of non-modal instructions have already been described: the
Load and the Add instructions. Non-modal z/Architecture instructions already
described also include the LG instruction and the AGF instruction. For example,
programs of any AMODE can issue AG R3,NUM64, described earlier, which adds
the value of a doubleword binary integer at location NUM64 to the contents of
GPR3, placing the sum in GPR3.

The LGF instruction is another example of a non-modal instruction. In LGF
R3,MYDATA, assume MYDATA is a signed negative binary integer. This instruction
places MYDATA into the low-order half of GPR3 and propagates the sign (1s) to the
high-order half, as follows:

If the current AMODE is 64, MYDATA can reside anywhere in the address space; if
the AMODE is 31, MYDATA must reside below 2 gigabytes; if the AMODE is 24,
MYDATA must reside below 16 megabytes.

4-8 z/OS V1R3.0 MVS Extended Addressability Guide

Other 64-bit instructions that are non-modal are the register form of AGF, which is
AGFR, and the register form of LGF, which is LGFR. Others are LGR, AGR, ALGR,
and ALG.

Modal Instructions
Modal instructions are instructions where addressing mode is a factor in the output
of the instruction. The AMODE determines the width of the output register
operands. A good example of a modal instruction is Load Address (LA). If you
specify LA R3,VIRT_PTR successively in the three AMODEs, what are the three
results?

v In AMODE 24, the address of VIRT_PTR is a 24-bit address that is loaded into
bits 40 through 63 of GPR3 (or bits 8 through 31 of the 32-bit register imbedded
in the 64-bit GPR). The processor places zeros into bits 32 through 39, and
leaves the first 31 bits unchanged, as follows:

v In AMODE 31, the address of VIRT_PTR is loaded into bits 33 through 63 of
GPR3. The processor places zero into bit 32 and leaves the first 32 bits
unchanged, as follows:

v In AMODE 64, the address of VIRT_PTR fill the entire 64-bit GPR3:

Other modal instructions are Move Long (MVCL), Branch and Link (BALR), and
Branch and Save (BASR).

Setting and Checking the Addressing Mode
z/Architecture provides three new Set Addressing Mode instructions that allow you
to change addressing mode. The instructions are SAM24, which changes the
current AMODE to 24, SAM31, which changes the current AMODE to 31, and
SAM64, which changes the current AMODE to 64.

Starting with z/OS V1R3, there are other ways for a program to be in AMODE 64:

v If your program uses the assembler AMODE 64 statement, and is bound that
way, then the load module is AMODE 64 and the system will give it control in
AMODE 64.

Chapter 4. Using the 64-bit Address Space 4-9

|

|
|
|

v You could use the binder AMODE(64) statement to define that your load module
is AMODE 64 and the system will give it control in AMODE 64.

v You could be a target PC routine and have set up the entry table entry to indicate
that your routine is to be given control in AMODE 64.

v Your interface could be via BASSM and you could have set up an 8-byte target
with the last bit on; callers can then load and then issue BASSM. Your routine
would then be entered in AMODE 64.

The AMODE bits in the PSW tell the processor what AMODE is currently in effect.
You can obtain the current addressing mode of a program by using the Test
Addressing Mode (TAM) instruction. In response, TAM sets a condition code based
on the setting in the PSW; 0 indicates AMODE 24, 1 indicates AMODE 31, and 3
indicates AMODE 64.

Linkage Conventions
In z/OS R2, program entry is in AMODE 24 or AMODE 31; therefore linkage
conventions you have used in S/390 apply, which means passing 4-byte parameter
lists and a 72-byte savearea.

A older program changing from AMODE 31 to AMODE 64 to exploit z/Architecture
instructions should expect to receive 31-bit addresses and the 72-byte save area
from its callers. If you are running in AMODE 64 and want to use an address a
caller has passed to you, the high-order half of the GPR will probably not be
cleared to zeros. As soon as you receive this address, use the Load Logical G
Thirty One Bits (LLGT or LLGTR) instruction to change this 31-bit address into a
64-bit address that you can use.

Pitfalls to Avoid
As you begin to use the 64-bit instructions, consider the following:

1. Some instructions reference or change all 64 bits of a GPR regardless of the
AMODE.

2. Some instructions reference or change only the low-order half of a GPR
regardless of the AMODE.

3. Some instructions reference or change only the high-order half of a GPR
regardless of the AMODE.

4. When you are using signed integers in arithmetic operations, you can’t mix
instructions that handle 64-bit integers with instructions that handle 31-bit
integers. The interpretation of a 32-bit signed number differs from the
interpretation of a 64-bit signed number. With the 32-bit signed number, the sign
is extended in the low half of the doubleword. With the 64-bit signed number,
the sign is extended to the left for the entire doubleword.

Consider the following example, where a 31-bit subtraction instruction has left a
31-bit negative integer in bits 32 through 63 of GPR3 and has left the high-order
half unchanged.

Next, the instruction AG R3,MYDOUBLEWORD, mentioned earlier, adds the
doubleword at the location MYDOUBLEWORD to the contents of the GPR3 and
places the sum at GPR3. Because the high-order half of the GPR has uncertain
contents, the result of the AG instruction is incorrect. To change the value in the

4-10 z/OS V1R3.0 MVS Extended Addressability Guide

|

|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

GPR3 so that the AG instruction adds the correct integers, before you use the AG
instruction, use the Load G Fullword Register (LGFR) instruction to propagate the
sign to the high-order half of GPR3.

IARV64 Services
The IARV64 macro provides all the virtual storage services for your programs.
Table 4-1 introduces these services and the rules for what programs can do with the
memory objects your programs create and use. The first column identifies the
IARV64 service and its functions, the second column describes what a program can
do if it is in problem state or has PSW key 8 through F, and the third column
describes what a program can do if it is in supervisor state or has PSW key 0
through 7.

Table 4-1. IARV64 Services and Rules for What Programs Do with Memory Objects

Function A problem state, key 8–F
program

A supervisor state or key
0–7 program

GETSTOR—create a
memory object

Can get a memory object in
the primary address space,
only when the program’s
home and primary address
space is the same.

The storage key of the
memory object will be the
same as the PSW key of the
caller.

Can assign ownership of the
memory object to the TCB of
the job step task or the
mother task (the task of the
program that issued the
ATTACHX).

Can get a memory object in
the primary or home address
space, as specified by
ALETVALUE.

Can assign ownership of the
memory object to a TCB in
the address space indicated
by ALETVALUE.

Can define the PSW key of
the memory object.

Can specify whether the
memory object can be freed
by an unauthorized program
and whether it can be
pagefixed and unpagefixed.

DETACH—free one or more
memory objects

Can free a memory object it
owns.

Can free a memory object it
owns.

Can free a memory object it
does not own if the memory
object is in the primary or
home address space.

PAGEFIX—fix physical
pages. If you specify a list of
page ranges, PAGEFIX can
fix the physical pages that
back more than one memory
object.

Cannot pagefix pages. Can fix pages in one or more
memory objects in the
primary or home address
space.

UNPAGEFIX—undo a
pagefix operation

Cannot unfix pages. Can unfix pages in one or
more memory objects in the
primary or home address
space.

PAGEOUT—alert the system
that physical pages will not
be used so that the system
can optimize the use of the
physical pages.

Can use only if the memory
object is in the primary
address space.

Can use for pages that back
memory objects in the
primary or home address
space.

Chapter 4. Using the 64-bit Address Space 4-11

Table 4-1. IARV64 Services and Rules for What Programs Do with Memory
Objects (continued)

Function A problem state, key 8–F
program

A supervisor state or key
0–7 program

PAGEIN—alert the system
that pages will be needed
soon.

Can use only if the memory
object is in the primary
address space.

Can use for pages that back
memory objects in the
primary or home address
space.

DISCARDATA—discard data
in physical pages and
optionally clear the pages to
zeros. If you specify a list of
page ranges, DISCARDDATA
can discard data in more
than one memory object.

Can use if (1) PSW key of
caller is the same as the
storage key of the memory
object, and (2) the memory
object is in the primary
address space.

Can use for memory objects
in the primary or home
address space.

Can use if the caller’s PSW
key does not match the
storage key of the memory
object.

CHANGEGUARD—see
“Creating a Guard Area and
Changing its Size” on
page 4-19

Can use this service only if it
owns the memory object.

Can use this service.

LIST—list the memory
objects.

Cannot list memory objects. Can list memory objects.

In summary, an unauthorized program can :

v Create memory objects in its own address space and relate them to each other

v Page out and pagein the physical pages that back the memory objects it owns

v Discard data in the physical pages that back the memory objects it owns

v Detach the memory objects it owns.

The remaining pages of this chapter describe how you use IARV64 services. It
does not describe environmental or programming requirements, register usage, or
syntax rules. For that information, turn to the descriptions of the IARV64 macro in
z/OS MVS Programming: Assembler Services Reference IAR-XCT or z/OS MVS
Programming: Authorized Assembler Services Reference ENF-IXG.

Protecting Storage above the Bar
To limit access to the memory object, the creating program can use the FPROT and
KEY parameters on IARV64. KEY assigns the storage key for the memory object
and FPROT specifies whether the storage in the memory object is to be
fetch-protected. Storage protection and fetch protection attributes apply for the
entire memory object. A program cannot reference storage in a fetch-protected
memory object without holding the PSW key that matches the storage key of the
memory object or PSW key 0.

Relationship Between the Memory Object and Its Owner
Ownership issues are important. If you don’t understand them, a memory object
that your program creates and uses might cause an abend. A program creates a
memory object, but it doesn’t own the memory object. A TCB owns the memory
object. If the unit of work that represents the program is a TCB, that TCB is the
owner of the memory object, unless the program assigns ownership to another
TCB.

4-12 z/OS V1R3.0 MVS Extended Addressability Guide

If the unit of work is an SRB, the program must assign ownership to a TCB.
Because of this assignment of ownership, the owner of the memory object and the
creator of the memory object are not always the same.

The memory object is available to programs with the correct PSW key and ALET
value. The memory object can be accessed by programs running under the owning
TCB and other programs running in the same address space. A program can use a
memory object in its primary address space if its PSW key matches the storage key
of the memory object. An authorized program can use a memory object in another
address space if it has the ALET for that address space on its access list and if its
PSW key matches the storage key of the memory object.

When a TCB terminates, the system deletes the memory objects that the TCB
owns. The system swaps a memory object in and out as it swaps in and out the
address space that dispatched the owning TCB.

A memory object can remain active even after the creating TCB terminates if a
program assigns ownership of the memory object to a TCB that will outlive the
creating TCB. In this case, termination of the creating TCB does not affect the
memory object. To illustrate the importance of assigning ownership to the
appropriate TCB, consider the following example:

PGMA, a program running in its home address space AS1, issues the PC
instruction to call PGMB which runs in AS2.

While in AS2, PGMB creates a memory object and assigns ownership to TCB2
in AS2. PGMB also ALESERV ADDs AS2 to PGMA’s dispatchable unit access
list (DUAL), so that PGMA can continue to reference the memory object after
PGMB PR’s back to PGMA in AS1.

After PGMB issues the PR to return to AS1, PGMA continues to use the
memory object created by PGMB. Sometime later, TCB2 terminates and the
system deletes the memory object. The next time PGMA references the memory
object, the system issues an abend.

Apply the following rule when assigning ownership of a memory object to a TCB:
make sure the owning TCB will exist for the life of its address space and the
memory object will exist for the life of the TCB. Such a TCB would be the TCB that
owns the cross memory resources of the address space; the address of the cross
memory owning TCB of AS2 is stored in the ASCBXTCB field of the ASCB of AS1.

Creating Memory Objects
To create a memory object, use the IARV64 GETSTOR service. When you create a
memory object, request a size large enough to meet long-term needs; the system,
however, abends a program that unconditionally tries to obtain more storage above
the bar than the MEMLIMIT allows. IBM recommends that you specify COND=YES
on the request to avoid the abend. In this case, if the request exceeds the
MEMLIMIT, the system rejects the request but the program continues to run. The
IARV64 service returns to the caller with a non-zero return code. The recovery
routine would be similar to one that would respond to unsuccessful STORAGE
macro conditional requests for storage.

The SEGMENTS parameter specifies the size, in megabytes, of the memory object
you are creating. The system returns the address of the memory object in the
ORIGIN parameter.

Other parameters further define the memory object:

Chapter 4. Using the 64-bit Address Space 4-13

v FPROT=YES gives it fetch protection.

v KEY=key specifies its storage key (authorized programs only).

v TTOKEN=ttoken indicates what task is to own the memory object.

v ALETVALUE=alet identifies the address space in which the memory object is to
reside, either the home or primary address space (authorized users only).

v USERTKN=usertoken is an 8-byte token that relates two or more memory objects
to each other. Later, the program can request a list of memory objects that have
that same token and can delete them as a group.

v SVCDUMPRGN=YES specifies that the storage in the memory object is to be
included when an SVC dump is requested through SDUMPX SDATA=(RGN).
SVCDUMPRGN=NO specifies that the virtual storage in the memory object is not
to be included when an SVC dump is requested through SDUMPX
SDATA=(RGN). There are other ways to include this storage in the dump, such
as the SDUMPX SUMLIST64 or SDUMPX LIST64 requests.

v CONTROL=AUTH prevents a memory object from being freed by an
unauthorized program (authorized users only). Additionally, CONTROL=AUTH is
required if you plan to fix and unfix pages.

When a program creates a memory object, it can specify, through the GUARDSIZE
and GUARDHIGH and GUARDLOW parameters, that the memory object is to
consist of two different areas. One area is called a guard area; this storage is not
accessible; the other area is called the usable area. A later request can change the
guard area into a usable area. The section “Creating a Guard Area and Changing
its Size” on page 4-19 can help you understand the important purposes for this kind
of memory object.

Before issuing IARV64, issue SYSSTATE ARCHLVL=2 so that the macro generates
the correct parameter addresses.

Example of Creating a Memory Object
The following example creates a memory object one megabyte in size. It specifies a
constant with value of one as a user token.
IARV64 REQUEST=GETSTOR,

SEGMENTS=ONE_SEG,
USERTLM=USER_TOKEN,
ORIGIN=VIRT64_ADDR,
COND=YES

ONE_SEG DC ADL8(1)
USER_TOKEN DC ADL8(1)
VIRT64_ADDR DS AD

Using a Memory Object
To use the storage in a memory object, the program must be in AMODE 64. See
“Setting and Checking the Addressing Mode” on page 4-9 for ways to get into
AMODE 64. Prior to z/OS V1R3, while in AMODE 64, a program could issue only
two IBM-supplied macros: IARV64 and SDUMPX. The parameter lists the program
passes to IARV64 can reside above or below the bar, but for SDUMPX, the
parameter lists must reside below the bar. With z/OS V1R3, additional macros can
be invoked from a program in AMODE 64. See z/OS MVS Migration for information
about macros that can be invoked from a program in AMODE 64.

To invoke macros other than those capable of being issued in AMODE 64, a
program must be in AMODE 31 or AMODE 24. This restriction might mean that the
program must first issue SAM31 to return to AMODE 31. After a program issues a
macro that is not capable of being issued in AMODE 64, it can return to AMODE 64

4-14 z/OS V1R3.0 MVS Extended Addressability Guide

|
|
|
|
|
|
|
|

|
|
|
|

through SAM64. To learn whether a program is in AMODE 64, see “Setting and
Checking the Addressing Mode” on page 4-9.

Managing the data, such as serializing the use of a memory object, is no different
from serializing the use of an area obtained through GETMAIN or STORAGE.

Although few macros can be issued in AMODE 64, other interfaces support storage
above the bar. For example, the DUMP command with the
STOR=(beg,end[,beg,end]...) parameter specifies ranges of virtual storage to be
dumped. Those ranges can be above the bar.

In summary, there are major differences between how you manage storage below
the bar and how you manage storage above the bar. Table 4-2 can help you
understand the differences, as well as, some similarities. The first column identifies
a task or concept, the second column applies to storage below the bar; the third
column applies to storage above the bar.

Table 4-2. Comparing Tasks and Concepts: Below the Bar and Above the Bar

Task or concept Below the bar Above the bar

Obtaining storage GETMAIN, STORAGE,
CPOOL macros and callable
cell pool services. On
GETMAIN and STORAGE,
you can ask to have a return
code tell you whether the
storage is cleared to zeros.

IARV64 GETSTOR service
creates memory objects;
storage is cleared to zeros.

Increments of storage
allocation

In 8–byte increments. In 1-megabyte increments.

Requirements for requestor GETMAIN with BRANCH=NO
cannot be issued by an SRB
or a program in AR mode.
GETMAIN with
BRANCH=YES can be
issued by an SRB or a
program in AR mode.
STORAGE can be issued by
an SRB or by a program in
AR mode. CPOOL can be
issued by an SRB but not by
a program in AR mode.
Callable cell pool services
can be issued in either mode
and by an SRB.

IARV64 can be issued by an
SRB or a program in AR
mode.

Freeing storage FREEMAIN, STORAGE,
CPOOL macros, and callable
cell pool services. Any 8-byte
increment of the
originally-obtained storage
can be freed. An entire
subpool can be freed with a
single request. At task
termination, storage owned
by task is freed; some
storage (common, for
example) does not have an
owner.

IARV64 DETACH service.
Storage can be freed only in
1-megabyte increments. All
memory objects obtained
with a specified user-defined
token can be freed with a
single request. At task
termination, storage owned
by task is freed; all storage
has an owner and that owner
is a task.

Chapter 4. Using the 64-bit Address Space 4-15

|
|

Table 4-2. Comparing Tasks and Concepts: Below the Bar and Above the Bar (continued)

Task or concept Below the bar Above the bar

Page fixing virtual storage
and making those pages
available to be paged out

PGSER FIX request and
PGSER FREE request for
any storage.

IARV64 PAGEFIX and
IARV64 UNPAGEFIX
services for storage obtained
with the CONTROL=AUTH
attribute. Storage obtained
with the
CONTROL=UNAUTH
attribute cannot be fixed with
these services.

Notifying the system of an
anticipated use of storage

PGSER LOAD request
PGSER OUT request.

IARV64 PAGEIN and IARV64
PAGEOUT services.

Making a range of storage
read-only or modifiable

PGSER PROTECT request
and PGSER UNPROTECT
request.

No ability exists to protect a
range of storage within a
memory object.

Discard data in physical
pages and optionally clear
the pages to zeros.

PGSER RELEASE request
always clears the storage to
zeros.

IARV64 DISCARDDATA
service. CLEAR=YES must
be specified to guarantee the
storage is cleared to zeros
on the next usage.

Obtaining information about
use of storage areas

VSMLIST service. IARV64 LIST service.

Storage key and fetch
protection attributes

Apply to the entire allocated
area.

Apply to the entire allocated
area.

What the area consists of System programs and data,
user programs and data.

User data only.

Performing I/O VSAM, BSAM, BPAM,
QSAM, VTAM, and EXCP,
EXCPVR services.

EXCP and EXCPVR
services.

Accessing storage To access data in the
2–gigabyte address space, a
program must run in AMODE
31 or AMODE 64. S/390 and
z/Architecture instructions
can be used.

To access data in the
16–exabyte address space, a
program must run in AMODE
64. To load an address of a
location above the bar into a
GPR, a program must use a
z/Architecture instruction.

Fixing the Pages of a Memory Object
Authorized programs can use IARV64 PAGEFIX to fix specified 4K pages in a
single memory object. Page fixing prevents the system from stealing those pages.
The ALETVALUE parameter tells the system where the memory object resides: the
primary or the home address space. The LONG parameter tells the system the
pagefix is expected to be of long duration (in seconds). On the RANGLIST
parameter, the program provides a list of the page ranges that are to be fixed. The
format of the list is:

4-16 z/OS V1R3.0 MVS Extended Addressability Guide

IARV64 PAGEUNFIX requests that the system unpagefix the pages that back
memory objects. A page remains fixed until the number of unpagefix operations for
that page equals the number of pagefix operations. As with the pagefix request, the
ALETVALUE parameter to specifies that the memory object is in the primary or
home address space and the program provides a list of page ranges.

Example of Fixing Pages of a Memory Object
Using the memory object created earlier, the following example in an AMODE 31
program, fixes 5 pages of the memory object, then unfixes them:

SYSSTATE ARCHLVL=2
.
.
.
XC R_LIST(100),R_LIST Clear the range list
LG 12,VIRT64_ADDR Get starting address to pagefix
STG 12,R_START Save it in range list
LGHI 4,5 Load number of pages to fix
STG 4,R_PAGES Save it in range list
SLR 12,12 Generate primary-space alet
ST 12,R_ALET Save it in range list
LA 4,R_LIST Get address of rangelist
LLGTR 4,4 Make it a 64-bit pointer
STG 4,RLISTPTR Save it

* Now pagefix the 5 pages
IARV64 REQUEST=PAGEFIX, +

RANGLIST=RLISTPTR, +
LONG=NO

* Using the same rangelist, unfix the pages
LA 12,R_LIST Get address of range list
LLGTR 12,12 Make it a 64-bit pointer
STG 12,RLISTPTR Save it
IARV64 REQUEST=PAGEUNFIX, +

RANGLIST=RLISTPTR
*
* Declares for example
R_LIST DS CL100

ORG R_LIST
R_START DS ADL8
R_PAGES DS ADL8
R_ALET DS AL4
RLISTPTR DS AD
VIRT64_ADDR DS AD

Discarding Data in a Memory Object
Your program can use the IARV64 DISCARDDATA service to the tell the system
that your program no longer needs the data in certain pages and that the system
can free them. Optionally, you can use the CLEAR parameter to clear the area to
zeros. The RANGLIST parameter provides a list of page ranges, as shown earlier.

Authorized programs can use the ALETVALUE parameter to specify that the
memory objects are in the primary address space or the home address space.

Chapter 4. Using the 64-bit Address Space 4-17

Releasing the Physical Resources that Back Pages of Memory Objects
A program uses the IARV64 PAGEOUT service to tell the system that the data in
certain pages will not be used for some time (as measured in seconds) and that the
pages are candidates for paging out of real storage. A pageout does not affect
pages that are fixed in real storage. On the RANGLIST parameter, the program
provides a list of page ranges. Authorized programs can use the ALETVALUE
parameter to designate memory objects in the address space identified by the
ALET.

A program uses the IARV64 PAGEIN service to tell the system that it will soon
reference the data in certain pages and that the system should page them into real
storage if the pages are not already backed by real storage. Authorized programs
can use the ALETVALUE parameter to target pages of memory objects in the
address space identified by the ALET.

Freeing a Memory Object
When your program no longer needs the memory object, it uses IARV64 DETACH
to free (delete) the memory object. You can free memory objects that are related to
each other through the user token defined on the IARV64 GETSTOR service.
Additionally, all programs can use the following parameters:

v MATCH=SINGLE,MEMOBJSTART frees a specific memory object, as identified
by its origin address.

v MATCH=USERTOKEN, USERTKN frees a related set of memory objects by
providing the user token specified when the memory objects were created.

v COND=YES makes the request conditional, but only when you also pass a user
token. IBM recommends you use COND to avoid having the program abend
because it asked to free a memory object that doesn’t exist.

Authorized programs can use additional parameters:

v ALETVALUE frees all memory objects in the primary address space or the home
address space.

v OWNER=YES,TTOKEN frees only memory objects that are owned by a specified
task.

v OWNER=NO (without TTOKEN) frees memory objects regardless of which task
owns them.

Three conditions to avoid when you try to free a memory object are:

v Freeing a memory object that does not exist.

If you try to free a memory object that doesn’t exist, the system abends your
program.

v Freeing a memory object that has a range of addresses PAGEFIXED.

If you try to free a memory object that has a range of addresses pagefixed, the
system abends you; address space termination might follow . See the
paragraph about task information in this section.

v Freeing a memory object that has I/O in progress.

If you specify the COND=YES parameter, you must also specify a user token. In
the recovery routine that gets control at an abend, you can try one of the following:

v Free any fixed pages. If you can unfix the pages, you can try again to free the
memory object.

v Ignore the abend and leave the memory object in an unusable state.

4-18 z/OS V1R3.0 MVS Extended Addressability Guide

As part of normal task termination, RTM frees the memory objects owned by the
terminating task; if RTM determines that there are fixed pages in the memory
object, the system issues a CALLRTM TYPE=MEMTERM request that results in
address space termination. To avoid this MEMTERM, your recovery routine should
try to terminate any active I/O into the memory object that your program created
and free any pages that your program fixed.

Example of Freeing a Memory Object
The program frees all memory objects that have the user token specified in
“USER_TOKEN”:
IARV64 REQUEST=DETACH,

MATCH=USERTOKEN,
USERTKN=USER_TOKEN

USER_TOKEN DC ADL8(1)

Creating a Guard Area and Changing its Size
A program can create a memory object that consists of two areas: an area it can
use immediately, called the usable area , and a second area, called a guard area .
The system does not allow programs to use storage in the guard area.

To get a memory object with a guard area, use the IARV64 GETSTOR service with
the SEGMENTS parameter to specify the size, in megabytes, of the memory object
and the GUARDSIZE parameter to specify the size, in megabytes, of the guard
area. Use GUARDLOC=LOW or GUARDLOC=HIGH to specify whether guard area
is to be at the low end of the memory object or at the high end.

One reason for asking for a guard area is to reserve the area for future use. For
example, a program can manage the parceling out of pages of the memory object.
Another reason for using a guard area is so that the program requesting the
memory object can protect itself from accidentally referencing storage beyond the
end of the memory object, and possibly overlaying data in another adjacent memory
object. For that, the program would use GUARDLOC=HIGH. If the program wanted
to protect itself from another program that might be using an adjacent memory at a
lower address, it would likely use GUARDLOC=LOW.

Use COND=YES, conditionally requesting the change, to avoid an abend if the
request exceeds the MEMLIMIT established by the installation or if there are
insufficient frames to back the additional usable area of the memory object. If it
cannot grant a conditioned request, the system rejects the request, but the program
continues to run.

The following illustration shows a memory object, three segments in size.
GUARDLOC=HIGH creates the guard area at the highest addresses of the memory
object. The memory object has two segments of usable storage and one segment
on reserve for later use.

Chapter 4. Using the 64-bit Address Space 4-19

Use the IARV64 CHANGEGUARD service to increase or decrease the amount of
usable space in a memory object by adjusting the size of the guard area. Your
program cannot reference an address in the guard area; if it does, the program
receives a program exception (0C4 abend). To avoid the abend, code a recovery
routine to get control upon receiving the program exception; the recovery routine
can retry and can then increase the usable part of the memory object (decreasing
the guard area.)

The guard area does not count towards the MEMLIMIT set by the installation; the
usable area does count toward the MEMLIMIT.

Example of Creating a Memory Object with a Guard Area
The following example creates a 3-megabyte memory object with a 2-megabyte
guard area. The guard area is at the high end of the memory object:
IARV64 REQUEST=GETSTOR, +

SEGMENTS=NUM_SEG, +
USERTKN=USER_TOKEN, +
GUARDSIZE=GUARDPAGES, +
GUARDLOC=HIGH, +
CONTROL=AUTH, +
ORIGIN=VIRT64_ADDR

The following example increases the size of the guard area by the specified
amount.
IARV64 REQUEST=CHANGEGUARD, +

CONVERT=FROMGUARD, +
MEMOBJSTART=VIRT64_ADDR, +
CONVERTSIZE=SEGMENT_SIZE, +
ALETVALUE=0

Listing Information About the Use of Virtual Storage Above the Bar
Authorized programs can use the IARV64 LIST service to obtain information about
memory objects in the caller’s address space. The system returns the information in
a work area you provide. The V64LISTPTR parameter defines the first address of
this work area; the V64LISTLENGTH identifies the length of the area. The system
returns the following information about usable areas (not guard areas) of memory
objects:

v Beginning address

4-20 z/OS V1R3.0 MVS Extended Addressability Guide

v Ending address

v Storage key

An Example of Creating, Using, and Freeing a Memory Object
The following program creates a 1-megabyte memory object and writes the
character string ″Hi Mom″ into each 4k page of the memory object. The program
then frees the memory object.

TITLE ’TEST CASE DUNAJOB’
ACONTROL FLAG(NOALIGN)

DUNAJOB CSECT
DUNAJOB AMODE 31
DUNAJOB RMODE 31

SYSSTATE ARCHLVL=2
* Begin entry linkage

BAKR 14,0
CNOP 0,4
BRAS 12,@PDATA
DC A(@DATA)

@PDATA LLGF 12,0(12)
USING @DATA,12
LHI 0,DYNAREAL
STORAGE OBTAIN,LENGTH=(0),SP=0,CALLRKY=YES
LLGTR 13,1
USING @DYNAREA,13
MVC 4(4,13),=C’F6SA’

* End entry linkage
*

SAM64 Change to amode64
IARV64 REQUEST=GETSTOR, +

SEGMENTS=ONE_SEG, +
USERTKN=USER_TOKEN, +
ORIGIN=VIRT64_ADDR
LG 4,VIRT64_ADDR Get address of memory obj

LHI 2,256 Set loop counter
LOOP DS 0H

MVC 0(10,4),=C’HI_MOM! ’ Store HI MOM!
AHI 4,4096
BRCT 2,LOOP

* Get rid of all memory objects created with this
* user token

IARV64 REQUEST=DETACH, +
MATCH=USERTOKEN, +
USERTKN=USER_TOKEN, +
COND=YES

*
* Begin exit linkage

LHI 0,DYNAREAL
LR 1,13
STORAGE RELEASE,LENGTH=(0),ADDR=(1),SP=0,CALLRKY=YES
PR

* End exit linkage
@DATA DS 0D
ONE_SEG DC FD’1’
USER_TOKEN DC FD’1’

LTORG
@DYNAREA DSECT
SAVEAREA DS 36F
VIRT64_ADDR DS AD
DYNAREAL EQU *-@DYNAREA

END DUNAJOB

Chapter 4. Using the 64-bit Address Space 4-21

4-22 z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 5. Using Access Registers

The term “extended addressability” refers to the ability of a program to use virtual
storage that is outside the address space the program is dispatched in. Chapter 3,
“Synchronous Cross Memory Communication” on page 3-1 describes how a caller
uses the PC instruction to call a program in another address space and run there
under the caller’s TCB. It describes the two cross memory instructions (MVCS and
MVCP) that move data from primary to secondary and from secondary to primary.

Access registers provide you with a different function from cross memory. You
cannot use them to branch into another address space. Through access registers,
however, you can use assembler instructions to manipulate data in other address
spaces and in data spaces. You do not use access registers to reference addresses
in hiperspaces.

In addition to this chapter, other sources of information can help you understand
how to use access registers:

v Chapter 6, “Creating and Using Data Spaces”, contains examples of using
access registers to manipulate data in data spaces.

v Principles of Operation contains descriptions of how to use the instructions that
manipulate the contents of access registers.

Also, the following books contain the syntax and parameter descriptions for the
macros that are mentioned in this chapter:

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Using Access Registers for Data Reference
Through access registers, your program, whether it is supervisor state or problem
state, can use assembler instructions to perform basic data manipulation, such as:

v Comparing data in one address space with data in another

v Moving data into and out of a data space, and within a data space

v Accessing data in an address space that is not the primary address space

v Moving data from one address space to another

v Performing arithmetic operations with values that are located in different address
spaces or data spaces.

The functions of cross memory and access registers are different and
complementary. In a multiple address space environment, you might use them both.

What is an access register (AR)? An AR is a hardware register that a program
uses to identify an address space or a data space. Each processor has 16 ARs,
numbered 0 through 15, and they are paired one-to-one with the 16 general
purpose registers (GPRs).

© Copyright IBM Corp. 1988, 2002 5-1

Why would a program use ARs? Generally, instructions and data reside in a
single address space — the primary address space (PASN). However, you might
want your program to have more virtual storage than a single address space offers,
or you might want to separate data from instructions for:
v Storage isolation and protection
v Data security
v Data sharing among multiple users

For these reasons and others, your program can have data in address spaces other
than the primary or in data spaces. The instructions still reside in the primary
address space, but the data can reside in another address space or in a data
space.

To access data in other address spaces, your program uses ARs and executes in
the address space control mode called access register mode (AR mode).

What is address space control (ASC) mode? The ASC mode determines where
the system looks for the data that the address in the GPR indicates. The two ASC
modes that are generally available for your programs are primary and AR mode.
The PSW determines the ASC mode. Both problem state and supervisor state
programs can use both modes, and a program can switch between the two modes.

v In primary mode , the data your program can access resides in the program’s
primary address space. (An exception to this statement is that a program in
primary mode can use the cross memory instructions, MVCP and MVCS, to
manipulate data in the secondary address space.) When it resolves the
addresses in data-referencing instructions, the system does not use the contents
of the ARs.

v In AR mode , the data your program can access resides in the address/data
space that the ARs indicate. For data-referencing instructions, the system uses
the AR and the GPR together to locate an address in an address/data space.
Specifically, the AR contains a value, called an ALET, that identifies the address
space or data space that contains the data, and the GPR contains a base
address that points to the data within the address/data space. (In this book the
term address/data space refers to “address space or data space”.)

The following chart summarizes where the system looks for the instructions and the
data when the program is in primary mode and AR mode.

ASC Mode Location of Instructions Location of Data

Primary mode Primary address space Primary address space

AR mode Primary address space Address/data space identified
by an AR

In this book, the AR and GPR pair that is used to resolve an address is called
AR/GPR. Figure 5-1 on page 5-3 illustrates AR/GPR 4.

0

0

14

14

1

1

15

15

Identify address spaces or data spaces

Identify locations within an address or data space

Access
Registers

General
Purpose
Registers

5-2 z/OS V1R3.0 MVS Extended Addressability Guide

Do not confuse cross memory mode with ASC mode. A program can be in AR
mode with the primary, secondary, and home address spaces all the same.
Likewise, a program can be in AR mode with the primary, secondary, and home
address spaces all different. Chapter 3, “Synchronous Cross Memory
Communication” on page 3-1 contains information about cross memory mode.

Do not confuse addressing mode (AMODE) with ASC mode. A program can be in
AR mode and also be in either 31-bit or 24-bit addressing mode. However,
programs in 24-bit addressing mode are restricted in their use of data spaces; for
example, a program in 24-bit addressing mode cannot create a data space, nor can
the program access data above 16-megabytes in that space.

How does your program switch ASC mode? Use the SAC instruction to change
ASC mode:
v SAC 512 sets the ASC mode to AR mode
v SAC 0 sets the ASC mode to primary mode

What does the AR contain? The contents of an AR designate an address/data
space. The AR contains a token that specifies an entry in a table called an access
list . Each entry in the access list identifies an address/data space that programs
can reference. The token that indexes into the access list is called an access list
entry token (ALET) . When an ALET is in an AR and the program is in AR mode,
the ALET identifies the access list entry that points to an address/data space. The
corresponding GPR contains the address of the data within the address/data space.
IBM recommends that you use ARs only for ALETs and not for other kinds of data.

The following figure shows an ALET in the AR and the access list entry that points
to the address/data space. It also shows a GPR that points to the data within the
address/data space.

By placing an entry on an access list and obtaining an ALET for that entry, a
program builds the connection between the program and the target address/data

Base Register

Address/Data Space Identifier

AR/GPR 4
GPR 4

AR 4

Figure 5-1. Example of an AR/GPR

ALET

Data

Address/Data Space

Access List

@

AR

GPR

Figure 5-2. Using an ALET to Identify an Address/Data Space

Chapter 5. Using Access Registers 5-3

space. (In describing the subject of authorization, the terms “target address space”
and “target data space” are used to mean an address space or data space in which
a program is trying to reference data.) The process of building this connection is
called establishing addressability to an address/data space.

For programs in AR mode, when the GPR is used as a base register, the
corresponding AR must contain an ALET. Conversely, when the GPR is not used
as a base register, the corresponding AR is ignored. For example, the system
ignores an AR when the associated GPR is used as an index register.

A Comparison of Data Reference in Primary and AR Mode
The best way to show how address resolution in primary mode compares with
address resolution in AR mode is through an example. Figure 5-3 and Figure 5-4
show two ways an MVC instruction works to move data at location B to location A.

In Figure 5-3, the move instruction, MVC, is in code that is running in primary mode.
The MVC instruction uses GPRs 1 and 2. GPR 1 is used as a base register to
locate the destination of the MVC instruction. GPR 2 is used as a base register to
locate some data to be moved.

In Figure 5-4, the MVC instruction, in code that is in AR mode, moves the data at
location B in Space Y to location A in Space X. GPR 1 is used as a base register to
locate the destination of the data, and AR 1 is used to identify space X. GPR 2 is
used to locate the source of the data, and AR 2 identifies Space Y. In AR mode, the
MVC instruction is in code that is running in AR mode. The MVC instruction moves
data from one address/data space to another. Note that the address space that
contains the MVC instruction does not have to be either Space X or Space Y.

GPRs

GPR 1 is used as a base register to
locate the destination of the MVC.

GPR 2 is used as a base register
to locate the data to be moved.

B

A

Address Space

0 1 2 . . .

. . .

MVC A(LEN,1),B(2)

Figure 5-3. The MVC Instruction in Primary Mode

5-4 z/OS V1R3.0 MVS Extended Addressability Guide

Addresses that are qualified by an ALET are called ALET-qualified addresses.

Coding Instructions in AR Mode
As you write your AR mode programs, use the advice in this section.

v Always remember that for an instruction that uses a GPR as a base register, the
system uses the contents of the associated AR to identify the address/data space
that contains the data that the GPR points to.

v Use ARs only for data reference; do not use them with branching instructions.

v Just as you do not use GPR 0 as a base register, do not use AR/GPR 0 for
addressing.

v You cannot use the following instructions when your program is in AR mode:
– Move to primary — MVCP
– Move to secondary — MVCS
– Program transfer — PT
– Basic program call — basic PC

Because ARs that are associated with index registers are ignored, when you
code assembler instructions in AR mode, place the commas very carefully. In
those instructions that use both a base register and an index register, the comma
that separates the two values is very important.

Table 5-1 on page 5-6 shows four examples of how a misplaced comma can
change how the assembler resolves addresses on the load instruction.

AR ALET
X

ALET
Y

0 1 2 . . .

. . .

GPR . . .

Access List

Space Y
Space X

GPR 1 is used as a base register to
locate the destination of the MVC and
AR 1 is used to identify Space X.

Address Space

Space Y

Space X
B

A

MVC A(LEN,1),B(2)

GPR 2 is used as a base register to
locate the data to be moved and AR 2
identifies Space Y that contains
the data.

Figure 5-4. The MVC Instruction in AR Mode

Chapter 5. Using Access Registers 5-5

Table 5-1. Base and Index Register Addressing in AR Mode

Instruction Address Resolution

L 5,4(,3) or L 5,4(0,3) There is no index register. GPR 3 is the base register. AR 3
indicates the address/data space.

L 5,4(3) or L 5,4(3,0) GPR 3 is the index register. Because there is no base
register, data is fetched from the primary address space.

L 5,4(6,8) GPR 6 is the index register. GPR 8 is the base register. AR
8 indicates the address/data space.

L 5,4(8,6) GPR 8 is the index register. GPR 6 is the base register. AR
6 indicates the address/data space.

For the first two entries in Table 5-1:

In primary mode, the examples of the load instruction give the same result.

In AR mode, the data is fetched using different ARs. In the first entry, data is
fetched from the address/data space represented by the ALET in AR 3. In the
second entry, data is fetched from the primary address space (because AR/GPR
0 is not used as a base register).

For the last two entries in Table 5-1:

In primary mode, the last two examples of the load instruction give the same
result.

In AR mode, the first results in a fetch from the address/data space represented
by AR 8, while the second results in a fetch from the address/data space
represented by AR 6.

Manipulating the Contents of ARs
Whether the ASC mode of a program is primary or AR, the program can use
assembler instructions to save, restore, and modify the contents of the 16 ARs.
Both problem state and supervisor state programs can use these instructions.

The set of instructions that manipulate ARs includes:

v CPYA — Copy the contents of one AR into another AR.

v EAR — Copy the contents of an AR into a GPR.

v LAE — Load a specified ALET/address into an AR/GPR pair.

v SAR — Place the contents of a GPR into an AR.

v LAM — Load the contents of one or more ARs from a specified location.

v STAM — Store contents of one or more ARs at a specified location.

For their syntax and help with how to use them, see Principles of Operation.

Example of Loading an ALET into an AR

An action that is very important when a program is in AR mode, is the loading of an
ALET into an AR. The following example shows how you can use the LAM
instruction to load an ALET into an AR.

The following instruction loads an ALET (located at DSALET) into AR 2:
LAM 2,2,DSALET LOAD ALET OF DATA SPACE INTO AR2
.

DSALET DS F DATA SPACE ALET

5-6 z/OS V1R3.0 MVS Extended Addressability Guide

Access Lists
When the system dispatches a work unit (that is, a TCB or SRB), it gives that work
unit an access list (a DU-AL) that is empty. When the system creates an address
space, it gives that address space an access list (PASN-AL) that contains only
entries for existing data spaces that are known as common area
(SCOPE=COMMON) data spaces. Programs add entries to the DU-AL and the
PASN-AL. The entries represent the address/data spaces that the programs want to
access.

Before your program can use ARs to reference data in an address/data space, it
must establish a connection to the address/data space. The connection between
the program that the work unit represents and the address/data spaces is through
an access list. The process of establishing this connection is called establishing
addressability.

Although you cannot use ARs to access data in hiperspaces, you can establish a
connection between a program and a hiperspace through ALETs and access lists. If
you are using hiperspaces see “Accessing Hiperspaces” on page 7-12. The
information in this chapter applies to data/address spaces.

Before you can set up the access list entries and obtain ALETs, you need to know
about:

v The two types of access lists, and the differences between them

v The two types of entries in access lists, and the differences between them

v The ALETs that are available to every program

v The ALESERV macro, which manages entries in access lists and gives
information about ALETs and STOKENs.

The term STOKEN (for “space token”) identifies an address space, a data space,
subspace, or a hiperspace. It is similar to an address space identifier (ASID or
ASN), with two important differences: the system does not reuse the STOKEN value
within an IPL, and data spaces, subspaces, and hiperspaces do not have ASIDs.
The STOKEN is an eight-byte variable that the system generates when you create
an address space, data space, subspace, or hiperspace. (Note that the system
never generates a STOKEN value of zero.)

Types of Access Lists
The access list can be one of two types:

v A primary address space access list (PASN-AL) — the access list that is
associated with an address space

v A dispatchable unit access list (DU-AL) — the access list that is associated with
a work unit (a TCB or SRB).

A program uses the DU-AL associated with its work unit and the PASN-AL
associated with its primary address space.

The difference between a PASN-AL and a DU-AL is significant. If your program is a
part of a subsystem that provides services for many users and has its own address

Establishing addressability to an address/data space means your program must:
v Have authority to access data in the address/data space
v Have an access list entry that points to the address/data space
v Have the ALET that indexes to the entry

Chapter 5. Using Access Registers 5-7

space, it might reference address/data spaces through its PASN-AL. A program can
create a data space, add an entry for the data space to the PASN-AL, and obtain
the ALET that indexes the entry. By passing the ALET to other programs in the
address space, the program can share the data space with other programs running
in the address space.

If your program is not part of a subsystem, it will probably place entries for
address/data spaces in its DU-AL.

Each work unit has one DU-AL; programs that the work unit represents can use it.
That DU-AL cannot be shared with another work unit. A program can, however, use
the ALCOPY parameter on the ATTACH(X) macro at the time of the attach, to pass
a copy of its DU-AL to the attached task. “Attaching a Subtask and Sharing Data
Spaces with It” on page 6-24 describes a program attaching a subtask and passing
a copy of its DU-AL. This action allows two programs, the issuer of the ATTACH
macro and programs running under the attached task, to have access to the
address/data spaces that were represented by the entries on the DU-AL at the time
of the attach.

Each address space has one PASN-AL. All programs running in the primary
address space can use the PASN-AL for that address space. They cannot use the
PASN-AL of any other address space.

The following lists summarize the characteristics of DU-ALs and PASN-ALs.

v The DU-AL has the following characteristics:

– Each work unit has its own unique DU-AL.

– All programs that the work unit represents can add and delete entries on the
work unit’s DU-AL.

– A program cannot pass its task’s DU-AL to a program running under another
task. Tasks can never share a DU-AL. The one exception is that a program
can pass a copy of its DU-AL to an attached task.

When the DU-AL contains address space, data space, or hiperspace entries,
the new subtask starts with an identical copy of the attaching task’s DU-AL.
The two DU-ALs do not necessarily stay identical. After the attach, the
attaching task and the subtask are free to add and delete entries on their own
DU-ALs.

If the attaching task deletes the data space and the DU-AL entry for that data
space, the subtask will still have an entry in its own DU-AL for that data
space, but no program will be able to access this data space from the
subtask.

When the DU-AL contains subspace entries, the new subtask does not start
with an identical copy of the attaching task’s DU-AL, because the system
does not copy the subspace entries to the subtask’s DU-AL.

– A program can pass its work unit’s DU-AL to an SRB routine that the program
schedules by using the MODE=FULLXM parameter on the SCHEDULE
macro. The result is similar to when a subtask receives a copy of the DU-AL.
The system dispatches the SRB with an identical copy of the scheduling work
unit’s DU-AL, minus any subspace entries, which are not copied. The work
unit and the SRB (once it is dispatched) are free to add and delete entries on
their own DU-ALs.

– A DU-AL can have up to 509 entries.

– A program can add more than one entry to its DU-AL for the same data
space.

5-8 z/OS V1R3.0 MVS Extended Addressability Guide

v The PASN-AL has the following characteristics:

– Every address space has its own PASN-AL. The system initializes the
PASN-AL to contain entries for existing SCOPE=COMMON data spaces.

– Supervisor state programs and programs in PSW key 0 - 7 running with this
address space as the primary address space can add and delete entries on
the PASN-AL.

– Problem state programs with PSW key 8 - F can add an entry to the
PASN-AL for a SCOPE=SINGLE data space.

– All programs running with this address space as the primary address space
can access address/data spaces through the PASN-AL.

– The PASN-AL is useful for cross memory service providers.

– A PASN-AL can have up to 510 entries, some of which are reserved for
SCOPE=COMMON data spaces.

– When the job step terminates, the PASN-AL is purged.

Adding and deleting DU-AL and PASN-AL entries for address spaces might require
that the program have special authorization. For more information on this
authorization, see “EAX-Authority to an Address Space” on page 5-25.

Because access lists belong to work units, you must remember the relationship
between the program and the work unit that represents the program. For simplicity,
this chapter describes access lists as if they belong to programs. For example,
“your program’s DU-AL” means “the DU-AL that belongs to the TCB that represents
your program”.

A Comparison of a PASN-AL and a DU-AL
Figure 5-5 shows PGM1 that runs in AS1. The figure shows AS1’s PASN-AL and
PGM1’s DU-AL. PGM1 shares the PASN-AL with other programs that execute in
AS1. It does not share its DU-AL with any other programs. The PASN-AL contains
entries to address/data spaces that program(s) placed there. PGM1 (either problem
or supervisor state) has an entry for Space X to its DU-AL and an ALET for Space
X. PGM1 received an ALET for Space Y from a program in supervisor state.
Assuming PGM1 has authority to Space X and Space Y, it has addressability to
Space X through its DU-AL and Space Y through its PASN-AL; it can access data in
both Space X and Space Y. Therefore, with one MVC instruction, PGM1 can move
data from a location in Space X to a location in Space Y.

Chapter 5. Using Access Registers 5-9

What happens to a program’s PASN-AL and DU-AL at an address space
switching operation? When a program issues a PC instruction that causes the
primary address space to change, the system does not dispatch a new TCB or
SRB. The PC routine that gets control runs under the same TCB or SRB as the
program that issued the PC. Therefore, the PC routine keeps the DU-AL that is
associated with the original program. However, the PC routine has the PASN-AL of
the new primary address space. This is a different PASN-AL than the one used by
the original program (except for the entries for SCOPE=COMMON data spaces).

For example, consider PGM1 in Figure 5-5. It has addressability to Space X through
TCB A’s DU-AL and Space Y through its PASN-AL. Figure 5-6 shows PGM1 issuing
a PC to PGM2 in another address space. The figure shows how addressability
through PASN-ALs and DU-ALs changes over a space-switching PC instruction.
After the PC instruction, the PC routine PGM2 still has addressability to Space X
through TCB A’s DU-AL. Because the primary address space has changed, PGM2,
however, does not have addressability to Space Y or Space Z. AS2 has its own
PASN-AL, which is available for programs that have AS2 as their primary address
space. PGM1 and PGM2 can access Space W, a SCOPE=COMMON data space,
using the same access list entry token (ALET).

TCB A

PGM 1

ALETX DC F
ALETY DC F

PASN-AL

Space Z
Space Y

AS1

Space Z

Space Y

DU-AL

Space X

Space X

Figure 5-5. Comparison of Addressability through a PASN-AL and a DU-AL

5-10 z/OS V1R3.0 MVS Extended Addressability Guide

Types of Access List Entries
There are two types of access lists entries for addressability to address spaces.
The two types differ from each other in the amount of authority-checking that the
system does when a program in AR mode issues a data-referencing instruction and
the data is in another address space.

An access list entry for an address space is either a public entry or a private
entry , and a combination of both these types can be on the same DU-AL or
PASN-AL.

v A program can access the target address space through a public entry if it has
(1) the access list entry that identifies the address space, and (2) the ALET for
the entry.

v A program can access the target address space through a private entry if it has
(1) an access list entry that identifies the address space, (2) the ALET for the
entry, and (3) the appropriate extended authorization index (EAX) value.

To be authorized to access the target address space, a program might need a
certain EAX value. When it has that value, it is EAX-authorized to the address
space. Establishing this authorization is a complex programming effort. It is
described fully in “EAX-Authority to an Address Space” on page 5-25.

Space Z

Space Y

PASN-AL

DU-ALTCB A

PGM1

PGM2

PC

ALETX DC F
ALETY DC F

PR

ALETX DC F

Space X

AS1

AS2

PASN-AL

Space Z

Space Y

Space X

Space W

Space W

Space W

Figure 5-6. PASN-ALs and DU-ALs at a Space Switch

Chapter 5. Using Access Registers 5-11

It is enough at this point to know that:

v Public entries allow any program that has the ALET to use the target address
space.

v Private entries can prevent a program from accessing data in an address space.

v Data spaces are accessed only through public entries.

Special ALET Values
Each program is provided with three ALETs that allow the program to access its
primary, secondary, and home address spaces. You do not need to add an entry to
an access list before you use these special ALETs.

Figure 5-7 describes the ALETs that have values of zero, one, and two, and the
address spaces they identify.

The three ALETs and examples of their use are:

v An ALET of zero designates the primary address space.

Some MVS macros require that the issuers have control parameter lists in the
primary address space. Use the ALET with the value “0” in the AR that
accompanies the GPR containing the address of the parameter list. “Loading the
Value of Zero into an AR” on page 5-13 shows several ways of loading an ALET
with the value “0” into an AR.

v An ALET of one designates the secondary address space.

Programs that are entered through a space-switching PC can reference their
caller’s parameters (those that reside in the caller’s address space) through an
ALET of one. For example, instead of using the MVCP and MVCS instructions to
move data between primary and secondary, a program can use the MVC
instruction and load values of zero (for the primary) and one (for the secondary)
in the ARs that are associated with the base registers that the instruction uses.
The MVC instruction moves data only between storage areas with appropriate
storage keys.

v An ALET of two designates the home address space.

An ALET of two provides easy access to the home address space while the
program is running in AR mode.

Note: Do not use an ALET of two in a disabled interrupt exit (DIE) routine.

Except for these three special ALET values, a program should never depend on the
value of an ALET.

0

1

2

Special ALETs

Primary
address
space

Home
address
space

Secondary
address
space

Figure 5-7. Special ALET Values

5-12 z/OS V1R3.0 MVS Extended Addressability Guide

Special ALET Values at a Space Switch
The address space referenced by an ALET of zero changes as the primary address
space changes. When a space-switching PC instruction, defined with SASN=OLD,
makes a different address space the primary address space, an ALET of zero
references the new primary address space. If the PC routine was defined with
SASN=NEW, then an ALET of zero and an ALET of one both reference the same
address space after a space switch.

The change in the meaning of an ALET of zero and one is important when your
program issues a space-switching PC instruction. If you pass an ALET of zero to
the routine in the target address space, the zero now refers to that address space.
If the parameter is in the address space that the program switched from and the PC
was defined SASN=OLD (or used the default), your program must change the value
of the ALET from zero to one. An example of this change is in “Example of Using
TESTART” on page 5-32.

The change in the meaning of an ALET of zero and one can also be important
when your program issues a space-switching PC instruction followed by a
non-space-switching PC instruction. For example, if your program issues a PC from
address space A to address space B:
v The home address space is A.
v The primary address space is B.
v The secondary address space is A.

If your program then issues a non-space-switching PC instruction within address
space B:
v The home address space is still A.
v The primary address space is still B.
v The secondary address space is now B .

When you use nested PC routines (one PC routine invokes another PC routine, and
that PC routine invokes yet another PC routine, and so on), using the special ALET
values is not sufficient to maintain addressability to any address space other than
the current primary and secondary address spaces. If you use nested PC routines,
use the ALESERV macro to add entries to the DU-AL and pass ALET-qualified
addresses. You can use the ALESERV macro with the ADDPASN parameter to add
the current primary address space to the DU-AL.

After a program issues a SSAR instruction, an ALET of one references the new
secondary address space.

The meaning of the ALET with the value of two (for the home address space) does
not change at a space switch.

Loading the Value of Zero into an AR
When the code you are writing is in AR mode, you must be very conscious of the
contents of the ARs. For instructions that reference data, the ARs must always
contain the ALET that identifies the address/data space that contains the data.
Therefore, even when the data is in the primary address space, the AR that
accompanies the GPR that has the address of the data must contain the value “0”.

The following examples show several ways of placing the value “0” in an AR.

Example 1

Chapter 5. Using Access Registers 5-13

Set AR 5 to value of zero, when GPR 5 can be changed.
SLR 5,5 SET GPR 5 TO ZERO
SAR 5,5 LOAD GPR 5 INTO AR 5

Example 2

Set AR 5 to value of zero, without changing value in GPR 5.
LAM 5,5,=F’0’ LOAD AR 5 WITH A VALUE OF ZERO

Another way of doing this is the following:
LAM 5,5,ZERO
.

ZERO DC F’0’

Example 3

Set AR 5 to value of zero, when AR 12 is already 0.
CPYA 5,12 COPY AR 12 INTO AR 5

Example 4

Set AR 12 to zero and set GPR 12 to the address contained in GPR 15. This code
is useful to establish a program’s base register GPR and AR from an entry point
address contained in register 15. The example assumes that GPR 15 contains the
entry point address of the program, PGMA.

LAE 12,0(15,0) ESTABLISH PROGRAM’S BASE REGISTER
USING PGMA,12

Another way to establish AR/GPR module addressability through register 12 is as
follows:

SLR 12,12
SAR 12,12
BASR 12,0
USING *,12

Example 5

Set AR 5 and GPR 5 to zero.
LAE 5,0(0,0) Set GPR and AR 5 to zero

The ALESERV Macro
Use the ALESERV macro to set up addressability to address/data spaces. Table 5-2
lists some of the functions of the macro, the parameter that provides the function,
and the section where the function is described.

Table 5-2. Functions of the ALESERV Macro

To do the following: Use this
parameter:

Described in this section:

Add an entry to an access list ADD “Adding an Entry to an Access List”
on page 5-15

Delete an entry from an access list. DELETE “Deleting an Entry from an Access
List” on page 5-24

5-14 z/OS V1R3.0 MVS Extended Addressability Guide

Table 5-2. Functions of the ALESERV Macro (continued)

To do the following: Use this
parameter:

Described in this section:

Add a public entry for the primary
address space to a DU-AL.

ADDPASN “Adding an Entry for the Primary
Address Space to the DU-AL” on
page 5-22

Obtain the STOKEN of the current
home address space.

EXTRACTH “Procedures for Establishing
Addressability to an Address
Space” on page 5-30

Obtain the STOKEN of an
address/data space, given the
ALET.

EXTRACT “Obtaining and Passing ALETs and
STOKENs” on page 5-18

Find an ALET on an access list,
given the STOKEN.

SEARCH “Adding an Entry to an Access List”

You can also find examples of the ALESERV macro in Chapter 6, “Creating and
Using Data Spaces”.

Setting Up Addressability to an Address/Data Space
Before your program can use ARs to reference data in an address/data space, it
must establish a connection to the address/data space. The important facts to
remember about setting up an environment in which your program can use ARs
follows:

Establishing addressability to an address/data space means your program must:
– Have authority to access data in the address/data space
– Have an access list entry that points to the address/data space
– Have the ALET that indexes to the entry

This section describes these actions and gives some examples. The first item in the
list, having authority to access data in the address/data space, depends on whether
the entry is for a data space or an address space.

v Authority to add an entry for a data space follows certain rules that are
summarized in Table 6-1 on page 6-7. This table tells what problem state and
supervisor state or PSW key 0-7 programs can do with data spaces.

v Authority to add an entry for an address space is determined by whether you
require that the system check the EAX value of the program when the program
issues an ALESERV ADD macro. CHKEAX=YES asks the system to make sure
the program has the appropriate EAX value before executing the macro.
CHKEAX=NO tells the system not to check the EAX value of the program.
EAX-authority is described in “EAX-Authority to an Address Space” on page 5-25.
Only programs in supervisor state or PSW key 0 - 7 can use CHKEAX=NO. If
they have EAX-authorization, problem state programs with PSW key 8 - F can
add entries for address spaces to their access lists.

Adding an Entry to an Access List
The ALESERV ADD macro adds an entry to the access list. Two parameters are
required: STOKEN, an input parameter, and ALET, an output parameter.

v STOKEN — the eight-byte STOKEN of the address/data space represented by
the entry. You might have received the STOKEN from another program, or from
DSPSERV CREATE, ALESERV EXTRACTH, or ASCRE.

Chapter 5. Using Access Registers 5-15

v ALET — index to the entry that ALESERV added to the access list. The system
returns this value at the address you specify on the ALET parameter.

Two optional parameters, AL and ACCESS, allow you to limit access to an
address/data space:

v AL=WORKUNIT or PASN

AL specifies the access list, the DU-AL (WORKUNIT parameter) or the PASN-AL
(PASN parameter), to which the ALESERV service is to add the entry. The
default is WORKUNIT.

Use AL=WORKUNIT if you want to limit the sharing of the address/data space to
programs running under the owning work unit. Use AL=PASN if you want other
programs running in the primary address space to have access to the
address/data space, or if you are adding an entry for a SCOPE=COMMON data
space.

v ACCESS=PUBLIC or PRIVATE

ACCESS specifies the type of entry, public or private, that the system places on
the access list. The default is PUBLIC. Access list entries for data spaces are
always PUBLIC.

Later in this chapter, you will learn about the EAX-authority that the
ACCESS=PRIVATE parameter imposes on the accessing of data in an address
space.

The ALESERV ADD process described in this chapter applies to the data spaces
called SCOPE=SINGLE and SCOPE=ALL. For SCOPE=COMMON data spaces,
ALESERV ADD adds an entry to all PASN-ALs. “Creating and Using
SCOPE=COMMON Data Spaces” on page 6-22 describes the ALESERV ADD
process for these data spaces.

The ALESERV ADDPASN macro adds to the DU-AL an entry for the primary
address space. An application would use this macro if its programs run in many
address spaces.

ALESERV ADD and ALESERV ADDPASN are the only ways to add an entry to an
access list. For examples of adding entries to the DU-AL and PASN-AL, see:
v “Example of Adding an Access List Entry for a Data Space”
v “Examples of Establishing Addressability to Data Spaces” on page 5-19
v “Example of Adding an Access List Entry for an Address Space” on page 5-17
v “Adding an Entry for the Primary Address Space to the DU-AL” on page 5-22.

The example of adding an entry for an address space specifies that the system is
not to check for EAX-authority.

If you want to know whether an address/data space already has an entry on an
access list, use ALESERV SEARCH. As input to the macro, give the STOKEN of
the space, which access list is to be searched, and the location in the list where
you want the system to begin to search. If the entry is on the list, the system
returns the ALET. If the entry is not on the list, the system returns a code in register
15.

Example of Adding an Access List Entry for a Data Space
The following code uses DSPSERV to create a data space named TEMP. The
system returns the STOKEN of the data space in DSPCSTKN and the origin of the
data space in DSPCORG. The ALESERV ADD macro adds an entry to a DU-AL

5-16 z/OS V1R3.0 MVS Extended Addressability Guide

and returns the ALET in DSPCALET. The program then establishes addressability to
the data space by loading the ALET into AR 2 and the origin of the data space into
GPR 2.

DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
BLOCKS=DSPBLCKS,ORIGIN=DSPCORG

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
.

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
.
LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
USING DSPCMAP,2 INFORM ASSEMBLER
.
L 5,DSPWRD1 GET FIRST WORD FROM DATA SPACE

USES AR/GPR 2 TO MAKE THE REFERENCE
.

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME
DSPBLCKS DC F’1000’ DATA SPACE SIZE (IN 4K BLOCKS)
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3

Using the DSECT that the program established, the program can easily manipulate
data in the data space.

A more complete example of manipulating data within this data space appears in
“Example of Creating, Using, and Deleting a Data Space” on page 6-21.

Example of Adding an Access List Entry for an Address Space
One way of protecting access to an address space is to require that the system
check that the EAX of a program is a certain value. The two times that the system
might check this EAX value are when your program tries to
v Add an entry to an access list for the address space
v Access the address space through that access list entry.

If the address space does not need the protection that the EAX offers, a program in
supervisor state or PSW key 0 - 7 can use the CHKEAX and ACCESS parameters
on ALESERV ADD when it adds the address space entry to the access list:

v CHKEAX=NO tells the system not to check the EAX value of the program that is
adding the entry to the access list.

v ACCESS=PUBLIC tells the system not to check the EAX value of a program
trying to access data in the address space.

In the following example, a supervisor state or PSW key 0 - 7 program adds an
entry to its DU-AL. It asks the system not to check any EAX values, either when it
adds the entry or when any instruction accesses data in the address space. The
program can have any EAX, including 0. The address space (represented by the
STOKEN at location ASTOKENN) is non-swappable. It could have been created by
the ASCRE service, which returns a STOKEN at the time of the address space
creation.

ALESERV ADD,ALET=ASALET,STOKEN=ASTOKENN,CHKEAX=NO, X
AL=WORKUNIT,ACCESS=PUBLIC

.
* PROGRAMS CAN NOW ACCESS THE ADDRESS SPACE USING THE ALET, ASALET

Chapter 5. Using Access Registers 5-17

.
ASALET DS F ALET FOR MVS ADDRESS SPACE
ASTOKENN DS CL8 STOKEN FOR MVS ADDRESS SPACE

Note that, by using the ALESERV defaults, the program could have issued the
following:

ALESERV ADD,ALET=ASALET,STOKEN=ASTOKENN,CHKEAX=NO

Obtaining and Passing ALETs and STOKENs
A program can obtain an ALET through the ALESERV macro with the ADD and
ADDPASN parameters. Or, it can receive an ALET from another program.

A program can obtain a STOKEN through DSPSERV CREATE, ALESERV
EXTRACT, or ALESERV EXTRACTH. Or, it can receive a STOKEN from another
program.

A program can pass an ALET or a STOKEN to another program in the same way it
passes other parameter data. MVS has certain rules for passing ALETs, as
described in “Rules for Passing ALETs”. It does not have rules for passing
STOKENs. However, the ALESERV service determines whether the receiving
program can add an entry for the address/data space that a STOKEN represents.

Rules for Passing ALETs
To provide addressability to an address/data space, a program might pass an ALET
to another program. MVS allows your program to pass the following ALETs:

v An ALET of zero.

v An ALET that indexes into a public entry on a DU-AL, if the program that passes
the ALET and the program that receives the ALET run under the same TCB or
SRB (that is, they have the same DU-AL).

v An ALET that indexes into the PASN-AL, if the program that passes the ALET
and the program that receives the ALET run in the same address space (that is,
they have the same PASN-AL).

v An ALET that indexes into the PASN-AL for a SCOPE=COMMON data space.

Do not pass the following ALETs:

v An ALET of one across a space-switching PC linkage. (A space-switching PC
instruction changes the program’s secondary address space.)

v An ALET that indexes an entry on the PASN-AL, passed to a program in another
address space, unless the ALET is for a SCOPE=COMMON data space. Each
address space has its own PASN-AL.

v An ALET that indexes an entry on another task’s DU-AL. (Each task has its own
DU-AL). However, your program can pass such an ALET to a subtask if the
subtask was created using the ALCOPY parameter on the ATTACH or ATTACHX
macro; the ALET must have been valid at the time of the attach.

v An ALET that indexes a private entry, passed across an interface (through a PC
instruction) that changes the EAX. (This rule is described in “EAX-Authority to an
Address Space” on page 5-25.)

“Examples of Establishing Addressability to Data Spaces” on page 5-19 has several
examples of programs passing ALETs.

5-18 z/OS V1R3.0 MVS Extended Addressability Guide

Examples of Establishing Addressability to Data Spaces
The best way to describe how to add an access list entry is through examples. This
section contains three examples:

v Example 1 sets up addressability to a data space, using the DU-AL. The
example continues with a program passing a STOKEN to another program so
that both programs can access the data space.

v Example 2 sets up addressability to a data space, using the PASN-AL. This
example continues with a program passing an ALET to another program so that
both programs can access the data space.

v Example 3 shows how to set up addressability so that two programs in different
address spaces can access the same data space.

In these examples, programs share their data spaces with programs running under
work units other than their own.

The examples all involve adding entries for data spaces. The reason the examples
are not of address spaces is because of the additional decision that you have to
make about EAX-authority when you add entries for address spaces to access lists.
Getting EAX-authority is described in 5-25. Turn to that section after you understand
how to add entries for data spaces.

Example 1: Getting Addressability Through a DU-AL :

Consider that a supervisor state program named PGM1 created a data space and
received a STOKEN from DSPSERV. To add the entry to the DU-AL, PGM1 issues:

ALESERV ADD,STOKEN=STOKDS1,ALET=ALETDS1,AL=WORKUNIT
.

ALETDS1 DS F
STOKDS1 DS CL8

ALESERV accepts the STOKEN, adds an entry to the DU-AL and returns an ALET
at location ALETDS1. Figure 5-8 shows PGM1 with the entry for DS1 on its DU-AL.
It shows the STOKEN and the ALET.

Consider that PGM2, also in supervisor state, and running under a TCB different
from PGM1’s TCB, would also like to have access to DS1. PGM1 passes PGM2
the STOKEN for DS1. PGM2 then uses the ALESERV ADD macro to obtain the

PGM 1

PGM 2

ALESERV . . .

ALETDS1 DS F
STOKDS1 DS CL8

AS1

DS1

DU-AL

DS1

Figure 5-8. Example 1: Adding an Entry to a DU-AL

Chapter 5. Using Access Registers 5-19

ALET and add the entry. Figure 5-9 shows PGM2 with addressability to DS1.

Note: A problem state program with PSW key 8 - F can add entries to an access
list only for a data space that the program created or owns.

Example 2: Getting Addressability Through a PASN-AL :

In Figure 5-10 on page 5-21, consider that PROG1, adds an entry for a data space
to the PASN-AL. PROG1 issues the following macro:

ALESERV ADD,STOKEN=STOKDS2,ALET=ALETDS2,AL=PASN
.

ALETDS2 DS F
STOKDS2 DS CL8

ALESERV accepts the STOKEN, adds an entry to the PASN-AL, and returns an
ALET at location ALETDS2. Figure 5-10 shows PROG1 with the PASN-AL entry for
DS2.

PGM 1

PGM 2

ALESERV . . .

ALESERV . . .

ALETDS1 DS F
STOKDS1 DS CL8

ALET1 DS F
STOK1 DS CL8

AS1

DS1

DU-AL

DU-AL

DS1

DS1

Figure 5-9. Example 1: Sharing a Data Space through DU-ALs

5-20 z/OS V1R3.0 MVS Extended Addressability Guide

Note: A problem state program with PSW key 8-F can add entries to the PASN-AL
only for the type of data space called SCOPE=SINGLE.

Consider that PROG2 (either in problem or supervisor state and running under a
TCB different from PROG1’s) would like to have access to DS2. In this case, both
PROG1 and PROG2, because they run in the same address space, share the
same PASN-AL. PROG2 does not have to add an entry to its PASN-AL; the entry is
already there. PROG1 passes the ALET to PROG2. Figure 5-11 shows that PROG2
has the ALET for DS2 and, therefore, has addressability to DS2 through its
PASN-AL.

PROG 1

PROG 2

ALESERV . . .

ALETDS2 DS F
STOKDS2 DS CL8

PASN-AL

DS2

AS1
DS2

Figure 5-10. Example 2: Adding an Entry to a PASN-AL

PROG 1

PROG 2

ALETDS2 DS F
STOKDS2 DS CL8

ALET2 DS F

PASN-AL

DS2

AS1
DS2

Figure 5-11. Example 2: Sharing a Data Space through the PASN-AL

Chapter 5. Using Access Registers 5-21

In a similar way, any supervisor state or problem state program that runs in AS1
and has the ALET for DS2 can access DS2.

The SCOPE parameter on DSPSERV determines how the creating program can
share the data space. For more information on the SCOPE parameter, see
“SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces” on
page 6-3.

Example 3: Passing ALETs Across Address Spaces :

Referring to Figure 5-11 on page 5-21, consider that PROG1 wants to allow a
program in another address space (whose home address space is different from
PROG1’s) to access data in DS2. Figure 5-12 shows that PROG1 passes the
STOKEN for DS2 to PROG2, a supervisor state program in AS2. PROG2 uses the
ALESERV macro to add the entry to its DU-AL. PROG2 also could have added the
entry to its PASN-AL.

Remember that getting addressability to an address space is similar to getting
addressability to a data space, with one difference: when you attempt to add an
entry for an address space to an access list, ALESERV allows you to require that
programs that access the address space through the entry have EAX-authority to
the address space.

Adding an Entry for the Primary Address Space to the DU-AL
A program can use the ADDPASN parameter on ALESERV to add an entry for the
primary address space to the program’s DU-AL. For example, consider the setup in
Figure 5-13 on page 5-23. TCB A represents PGM1 (in the home address space),
PGM2 (currently executing in AS2), PGM3, and PGM4. In other words, all the PC
routines shown run under the same TCB with the same DU-AL. PGM3 and PGM4
can use an ALET of 2 to reference the home address space. However, no special
ALET exists for PGM3 and PGM4 to reference AS2.

PGM 2

ALESERV . . .

STOK2 DS CL8

AS2

DU-AL

DS2

PROG 1

ALETDS2 DS F
STOKDS2 DS CL8

PASN-AL

DS2

AS1

DS2

Figure 5-12. Example 3: Sharing Data Spaces Between Two Address Spaces

5-22 z/OS V1R3.0 MVS Extended Addressability Guide

PGM2, without having EAX-authority to the address space, can issue ALESERV
ADDPASN to place an entry for AS2 on the DU-AL. This action gives PGM3 and
PGM4 addressability to AS2, providing the ALETs are passed to these programs.
In the following example, a program adds an entry for the primary address space to

the DU-AL as a public entry.
ADDPASN CSECT
ADDPASN AMODE 31
ADDPASN RMODE ANY

BAKR 14,0 SAVE CALLER’S STATUS ON STACK
SAC 512 SWITCH INTO AR MODE
.
LAE 12,0 SET BASE REGISTER AR
BASR 12,0 SET BASE REGISTER GR
USING *,12
SYSSTATE ASCENV=AR
.

* ADD PROGRAM’S PASN AS PUBLIC TO THE PROGRAM’S DU-AL
ALESERV ADDPASN,ALET=PGMALET
.

* BODY OF PROGRAM
.

* REMOVE PROGRAM’S PASN FROM DU-AL
ALESERV DELETE,ALET=PGMALET REMOVE PASN FROM DU-AL
.
PR RETURN TO CALLER
.

PGMALET DC F ALET FOR PROGRAM’S PASN
END

Using the ALET for the Home Address Space
If a program is part of a subsystem that offers services to many users, it might want
to set up addressability for programs executing in other address spaces to
reference data in its address space. Figure 5-14 on page 5-24 shows a subsystem’s
home address space as AS1. Setting up addressability to the home address space
requires no action. The PC routines that run in address spaces AS2, AS3, and AS4
all run under the same TCB, that of PGM1. Addressability to AS1 is through the
special ALET of two. PGM2, PGM3, and PGM4 can place the value 2 in an AR of a
AR/GPR pair to reference data in the home address space.

AL2 DC F

TCB A

PGM 1

PGM 2 PGM 3 PGM 4

PC PC
PC

PGMALET DC F
ALET2 DC F

ALESERV ADDPASN . . .

AS1 AS2 AS3 AS4

Home address
space

Primary address
spaceDU-AL

AS2

Figure 5-13. Obtaining the ALET for the Primary Address Space

Chapter 5. Using Access Registers 5-23

Deleting an Entry from an Access List
Use ALESERV DELETE to delete an entry on an access list. The ALET parameter
identifies the specific entry.

Access lists have a limited size; the DU-AL has 509 entries and the PASN-AL has
510 entries. Therefore, it is a good programming practice to delete entries from an
access list when the entries are no longer needed. The specific rules are:

v If a program needs an entry for a short period of time, it should delete the entry
when it no longer needs the entry.

v If a program adds an entry and uses that entry during execution, the program
does not need to delete the entry; the system deletes the entry when the task
terminates.

v If a supervisor state or PSW key 0 - 7 program does not want the system to
check the EAX-authority of the program when it deletes an entry for an address
space, it should use CHKEAX=NO on ALESERV DELETE. CHKEAX=YES is the
default.

v Once the entry is deleted, the system can immediately reuse the ALET.

Programs that share data spaces with other programs have another action to take
when they delete an entry from an access list. They should notify the other
programs that the entry is no longer connecting the ALET to the data space.
Otherwise, those programs might continue to use an ALET for the deleted entry.
See “ALET Reuse by the System” on page 5-25 for more information.

Example of Deleting a Data Space Entry from an Access List
The following example deletes the entry for the ALET at location DSPCALET. The
example also includes the deletion of the data space with a STOKEN at location
DSPCSTKN.

ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
.

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

PGM 1

PGM 2 PGM 3 PGM 4

PC

PC PC

AS1 AS2 AS3 AS4

Home address
space

Figure 5-14. Using the ALET for the Home Address Space

5-24 z/OS V1R3.0 MVS Extended Addressability Guide

If the program does not delete an entry, the entry remains on the access list until
the work unit terminates. At that time, the system frees the access list entry.

Example of Deleting an Address Space Entry from an Access List
The following example deletes the entry that was added in the example in “Example
of Adding an Access List Entry for an Address Space” on page 5-17.
* .

ALESERV DELETE,ALET=ASALET,CHKEAX=NO
.

ASALET DS F ALET FOR MVS ADDRESS SPACE

When ALESERV ADD added the entry to the access list, the system did not check
the EAX-authority of the program; in this example, the system does not check the
EAX-authority either.

ALET Reuse by the System
ALETs are not unique; they index a specific entry on a PASN-AL or DU-AL,
connecting a program to an address/data space. When ALESERV DELETE
removes an access list entry, the connection between the ALET and the space no
longer exists. The access list entry and its corresponding ALET are available for the
system to use again. The breaking of the connection and the reuse of the ALET
mean that a program using the old ALET:
v Does not gain access to the space
v Might gain access to another space

The system does not check and notify programs about the reuse of an ALET .
Therefore, when a program uses ALESERV DELETE to delete an access list entry,
the program must ensure that other programs do not use the old ALET.

Consider a program, PROGA, deleting the data space, DSA, and removing the
entry from the PASN-AL. The ALET for that entry, ALETA, ceases to have meaning
in relationship to DSA. The system, free now to reuse that ALET, assigns ALETA to
a new data space, DSB. Suppose other programs in the address space were also
using ALETA to access DSA. If PROGA does not tell those programs about the
removal of ALETA, those programs will mistakenly access DSB, while intending to
access DSA.

This response to the system’s removal of the entry and reuse of an ALET is similar
to the work a program does after it frees address space storage that it obtained and
shared with other programs. When that area of storage is freed, MVS reuses the
area to satisfy a later request for storage. When an access list entry is freed, MVS
reuses that ALET to satisfy a later ALESERV ADD request.

EAX-Authority to an Address Space
MVS uses EAXs to control access to address spaces through ARs in a way similar
to the way it uses AXs to check if a program has the authority to issue the SSAR
instruction with an address space as the target of the SSAR instruction. To be
EAX-authorized to the target address space, a program’s EAX, when used as an
index into the address space’s authority table, must point to an entry that indicates
SSAR authority. An AX value is related to an address space; all programs running
in an address space have the same AX value at any given time. An EAX value is
related to a PC routine. The caller has that EAX value only while the PC routine
runs. When the PC returns control, the EAX value returns to what it was before the
call.

Chapter 5. Using Access Registers 5-25

In general, programs start out with an EAX of zero. An EAX of zero is an
unauthorized EAX value that can prevent the program from adding or deleting
entries for address spaces on its access lists and from accessing data in address
spaces other than the one it is running in.

Earlier in the chapter the two types of access list entries were defined. The
definitions are repeated here.

An access list entry for an address space is either a public entry or a private
entry , and a combination of both these types can be on the same DU-AL or
PASN-AL. The two types differ from each other by the kind of checking the system
does when a program tries to use the entry to access an address space.

v A program can access the target address space through a public entry if it has
(1) the ALET for the entry and (2) the access list entry that identifies the address
space.

v A program can access the target address space through a private entry if it has
(1) the ALET for the entry, (2) an access list entry that identifies the address
space and, (3) the appropriate EAX value.

The ACCESS and CHKEAX parameters on ALESERV determine when the system
checks the EAX-authority of the program.

v CHKEAX=YES tells the system to check the EAX of the program at the time the
program uses the ALESERV macro to add the entry for the address space or
delete the entry from the access list.

v ACCESS=PRIVATE tells the system to check the EAX of the program that is
attempting to access the target address space through the entry.

It is important that you understand the relationship between the two parameters on
ALESERV that determine whether the system checks the EAX value against the
SSAR authority in the target address space’s authority table. Table 5-3 describes
the relationship.

Table 5-3. Relationship Between the CHKEAX and ACCESS Parameters on ALESERV

CHKEAX= ACCESS= EAX-Checking That Results

YES PUBLIC The caller must have EAX-authority to add the entry,
but no program needs EAX-authority to access the
address space through the entry.

YES PRIVATE The caller must have EAX-authority to add the entry
for the address space, and all programs that access
the address space through that entry must also have
EAX-authority.

NO PUBLIC The caller does not need EAX-authority to add the
entry, and programs that access the address space
through the entry do not need EAX-authority. See
“Example of Adding an Access List Entry for an
Address Space” on page 5-17 for an example.

NO PRIVATE The caller does not need EAX-authority to add the
entry, but programs that access the address space
through the entry need EAX-authority.

Once a program places a private entry on the access list (placing the EAX
restriction on the users of the address space), a supervisor state or PKM 0 - 7
program running in the address space can use the ATSET macro to turn SSAR
authority off. This action means that an EAX, when used as an index into that entry

5-26 z/OS V1R3.0 MVS Extended Addressability Guide

in the authority table, will find SSAR authority turned off. The program with that EAX
no longer has EAX-authority to the address space. It is not possible, however, for a
program in the target address space to prevent a program from using an entry that
was added with the CHKEAX=NO and ACCESS=PUBLIC parameters on ALESERV.

Figure 5-15 gives an example of public and private entries. PGM1 has public entries
and private entries on its DU-AL and its PASN-AL. It has the ALETs that allow it to
access AS1 and DS1 through its PASN-AL and AS2 and AS3 through its DU-AL.

v To add the entries for the three address spaces to an access list, the program
might have had to establish EAX-authority to AS1, AS2, and AS3. A supervisor
state or PSW key 0 - 7 program can use CHKEAX=NO on ALESERV that allows
the program to add the entry, requesting that the system not check its EAX
value. Problem programs with PSW key 8 - F must have EAX-authority.

v To add an entry for the data space to an access list, the program has to meet
certain MVS criteria, as described in Table 6-1 on page 6-7.

v To access data in AS1 and AS2 , the program has to have EAX-authority to
those address spaces. To access data in address spaces that have private
entries, the system checks the EAX-authority of the program to the address
space.

v To access data in AS3 or the data space , the program does not need
EAX-authority. Entries for data spaces are public entries. To access data in
address spaces that have public entries, the system does not check the
program’s EAX-authority.

PGM 1

ALETDS1 DC F
ALETAS1 DC F
ALETAS2 DC F
ALETAS3 DC F

PASN-AL

public

private

AS1

AS1

AS3

AS2

DU-AL

private

public

DS1

Data

Space

Figure 5-15. Difference Between Public and Private Entries

Chapter 5. Using Access Registers 5-27

To delete the entries for the three address spaces, the program might need
EAX-authority to the address spaces. A supervisor state or PSW key 0 - 7 program
can use the CHKEAX=YES parameter on the ALESERV macros to require this
system checking. Problem programs must have EAX-authority.

Setting the EAX Value
The EAX is an index that is similar to the cross memory authorization index (AX),
and is obtained in the same manner, through the AXRES macro (see z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN and
“Establishing Cross Memory Communication” on page 3-14 for more information
about AXRES). Unlike an AX, which is associated with an address space, an EAX
is associated with a PC routine and is available to the programs that call the PC
routine.

Figure 5-16 on page 5-29 shows the AX value for an address space and the EAX
value of a program in supervisor state or PSW key 0 - 7. Assume that the
ALESERV ADD macro included CHKEAX=YES, or the default, and that the entry for
address space AS2 is a private entry, ACCESS=PRIVATE.

v The AX value of AS1 indexes into the AT of AS2. The system checks this value
on PT or SSAR instructions to find out if a caller in AS1 has the authority to (1)
PT to AS2 or (2) set AS2 as its secondary address space. If the entry in AS2’s
authority table has the PT authority, PGM1 can PT to AS2; if SSAR authority is
on, PGM1 can set AS2 as its secondary address space.

v The EAX value of PCRTN also indexes into the AT of AS2. The system checks
this value when PCRTN uses the ALESERV ADD macro with the CHKEAX=YES
option to add an access list entry for the address space to either its DU-AL or its
PASN-AL. The system also checks this value when the program tries to
reference AS2 through the entry (the entry is a private entry). Because the entry
in AS2’s authority table indicates SSAR authority, the caller of PCRTN is
considered to be EAX-authorized to AS2.

In Figure 5-16, the value of the AX and EAX is 4. The value 4 is an arbitrary value
chosen for illustrative purposes. You obtain an AX or EAX value from the AXRES
macro. The entry that the AX and EAX indexes into indicates SSAR authority is on,
which means that PGM1 is EAX-authorized to the address space.

The example also shows the difference between cross memory data movement with
a move to primary (MVCP) and a data movement performed through ARs and the
MVC instruction. PGM1 uses the SSAR instruction to establish AS2 as the
secondary address space, then it uses MVCP to move data from AS2 to AS1.
PCRTN issues the SAC instruction to change the ASC mode to AR mode. Having
loaded the addresses and ALETs into the AR/GPR correctly, PCRTN uses MVC to
move data from AS2 to AS1.

Notes:

1. If PCRTN had used CHKEAX=NO on ALESERV, the system would not have
checked the EAX.

2. If PCRTN had used ACCESS=PUBLIC on ALESERV, the system would not
have checked the EAX value when programs referenced that address space
through that access list entry.

3. Consider the storage key and data access and integrity issues when you add
entries for address spaces. Most problem state programs execute with a PSW
key of 8, which allows them to use public access list entries to modify data in
storage that has storage key 8.

5-28 z/OS V1R3.0 MVS Extended Addressability Guide

4. The EAX value can be the same as the AX value.

In some cases, supervisor state or PSW key 0 - 7 programs in the target address
space can change the EAX checking that the system does for programs accessing
data in their address space. For example, in Figure 5-16, a program in AS2 could
use the ATSET macro to change SSAR authority in the fifth entry in the authority
table. Because the entry was added as CHKEAX=YES and ACCESS=PRIVATE, if
the program turned SSAR authority off, PCRTN could no longer access the address
space through that access list entry. If the entry had been added CHKEAX=NO and
ACCESS=PUBLIC, programs in the target address space would be unable to
prevent access through those access list entries.

. . .

AS1

AS1

AX Authorization

EAX Authorization

AS2

AS2

Authority

table

1

1

Authority

table

Data

AX=4

EAX=4

Data

PT authority

PT authority

. . .

PCRTN

SAC 512
MVC

ALESERV ADD ...

PC

SSAR AS2
MVCP

PROG1

PGM1 SSAR authority

SSAR authority

Figure 5-16. Comparison of an AX and an EAX

Chapter 5. Using Access Registers 5-29

Procedures for Establishing Addressability to an Address Space
To establish the environment in which a program can add an access list entry for an
address space and access data through private entries, programs in the accessing
address space and the target address space must:

v Place the entry in an access list

v Obtain the ALET for the entry

v Issue a stacking PC; programs must define the stacking PC through the ETDEF
macro, and use the EAX parameter on ETDEF to specify the appropriate EAX
value.

Issuing the stacking PC means that you must establish some of the same
linkages that are described in Chapter 3, “Synchronous Cross Memory
Communication” on page 3-1 and have a program in the target address space
help in establishing those linkages.

Remember that the EAX-authority to an address space is the same as the SSAR
authority. In other words, authority for an address space to issue the SSAR
instruction for the target address space is the same as the authority to add an entry
for an address space to an access list or access data in that address space through
ARs. The same ATSET macro that sets the PT and SSAR authority in the target
address space’s authority table also sets authority table bits that correspond to the
EAX.

As you read the following procedures for a program in the accessing address space
and a program in the target address space, keep three facts in mind:

v A problem state program with PSW key 8 - F must be EAX-authorized to the
target address space before it can issue the ALESERV ADD or ALESERV
DELETE macros for that address space. A supervisor state or PSW key 0 - 7
program might require EAX-authorization.

v The target address space must give explicit permission to the accessing
program.

v The only way for a program in the accessing address space to get a non-zero
EAX is to issue a stacking PC instruction, which establishes the appropriate EAX.

Procedures for the Accessing Address Space
The procedures for the program in the accessing address space include writing a
stacking PC routine (Step 1), establishing the environment in which it can be called
(Steps 2 through 6), and invoking the PC routine (Step 7). The procedures are as
follows:

1. Write a PC routine that will run in the accessing address space.

The PC routine contains the ALESERV ADD request for an address space and
any code that manipulates data in the target address space. (See Step 7.)

2. Issue the AXRES macro to reserve an AX to be placed in the entry table
descriptor (ETD) as the EAX value of the PC routine.

3. Place the AX in a common area so that a program in the target address space
can obtain it and set its AT accordingly.

4. Issue the ETDEF macro to build the PC routine’s ETD.

On the EAX parameter, code the address of the AX value that is to be the EAX
of the PC routine.

5. Establish the cross memory structures in the accessing address space so that
the stacking PC routine can be called.

v Issue the ETCRE macro to build the entry table.

v Issue the LXRES macro to reserve a linkage index (LX) in the linkage table.

5-30 z/OS V1R3.0 MVS Extended Addressability Guide

v Issue the ETCON macro to connect the entry table to the linkage table entry.

6. Wait (using the WAIT macro) for the program in the target address space to set
its authority table entry.

The program in the target address space will accept the EAX value and set the
authority table accordingly. In this way, the target address space “gives
permission” to the accessing program to reference data in the address space.

7. Invoke the stacking PC routine to gain EAX-authorization.

While the PC routine is running, the caller has the EAX value that the EAX
parameter on ETDEF defined. The PC routine can perform the following actions:

v Issue the ALESERV ADD macro to add an entry for the target address space
to the access list.

v Manipulate data in the target address space, if needed.

If the routine uses the ALET that ALESERV returns in accessing or
manipulating data in the target address space, the PC routine must be in AR
mode (either through the SAC instruction or through the AR parameter on the
ETDEF macro that defined the PC routine).

v Use the PR instruction to return to the caller and restore the EAX value that
existed before the PC routine ran.

Procedures for the Target Address Space
The procedure for a program in the target address space is as follows:

1. Wait (using the WAIT macro) for the accessing address space to place the AX
(to be used as the EAX) into the common area.

2. Change to supervisor state to invoke the cross memory macros.

3. Retrieve the AX value that the accessing address space passed and issue the
ATSET macro to set the authority table.

4. Notify (using the POST macro) the accessing address space that the authority
table is set.

This action tells the accessing address space that a program can successfully
issue the ALESERV macro.

Changing an EAX Value
Two instructions can change a program’s EAX value:

v The PC instruction, providing the value on the EAX parameter changes the EAX
value for the caller

v The PR instruction, which restores the EAX value to the value that the caller had
before it entered the PC routine.

The program has that EAX value only while the PC routine is running.

Freeing an EAX Value
When you no longer need an EAX value, you should use the AXFRE macro to
return the EAX to the system. Before you issue AXFRE, make sure that the EAXs
being returned are no longer being used by any address space, or your program is
abnormally terminated.

Checking the Authority of Callers
A PC routine might want to check the validity of the ALETs that a calling program
passed and also check the EAX-authority of the calling program. Making such
checks is a good programming practice for PC routines that change the EAX value
and space-switching PC routines.

Chapter 5. Using Access Registers 5-31

The TESTART macro tests the validity of an ALET and the EAX-authority of the
caller to access the address/data space that the ALET represents. The macro
returns a code that identifies whether the ALET is:
v 0
v A valid ALET for the DU-AL
v A valid ALET for the PASN-AL
v 1
v Invalid

Input to TESTART is the ALET that it received and the EAX of the calling program.
To get the EAX, a program can issue the extract stacked state (ESTA) instruction to
retrieve the EAX from the current linkage stack entry. The first information field in
the linkage stack entry contains the EAX of the caller. (If the EAX is 0, the ALET is
for a public entry.) See “Extract Stacked State (ESTA) Instruction” on page 2-5 for a
description of ESTA instruction, an example of its use, and the format of the
information field. Figure 5-17 shows an example of PGM1 (in problem state)
requesting service from PCRTN (in supervisor state).

Having received the ALET from another program, PGM1 passes the ALET to
PCRTN for PCRTN’s use. Before it uses the ALET, PCRTN issues the TESTART
macro to test its validity.

To get the EAX value of the caller, PCRTN issues the ESTA instruction. PCRTN
determines which of the return codes is acceptable for its purposes. For example, it
might accept only ALETs that index public entries on a DU-AL.

Example of Using TESTART
In the following example, the stacking PC routine validates the caller’s ALET to
reduce the probability of taking a program check referencing storage. Only ALETs of
0 or ALETs on the DU-AL are valid for a space-switch PC routine. Because the
primary and secondary address spaces have changed at the space-switch, an
ALET of 1 or an ALET on the PASN-AL are not valid.

PGM 1

PC

ALET2 DC F

PCRTN

ESTA ...
TESTART ...

ALETAS2 DC F

PASN-AL

private entry

AS1

AS2

Figure 5-17. Checking the Validity of an ALET

5-32 z/OS V1R3.0 MVS Extended Addressability Guide

The following code checks for ALETs of 0 and 1. It then changes the ALET of 0 to 1
to reflect the change in primary and secondary address space at the space switch.

SLR 5,5 SELECT ESTA CODE FOR DESIRED INFORMATION
* 0 - PKM / SASN / EAX / PASN

ESTA 4,5 LOAD INFORMATION INTO GPRs 4 AND 5
* GPR5 NOW CONTAINS EAX AND PASN

EREG 1,1 GET CALLER’S AR/GPR1 FROM LINKAGE STACK
.
TESTART ALET=(1),EAX=(5)
.

* THESE ARE THE rc=0 - ALET IS 0
* TESTART RETURN rc=4 - ALET IS VALID DU-AL ALET
* CODES. 0 AND 4 rc=8 - ALET IS VALID PASN-AL ALET
* MEANS A GOOD rc=12 - ALET IS 1
* ALET. rc=16 - ALET IS NOT VALID
* rc=20 - UNEXPECTED ERROR

.
LA 0,4
CR 15,0 If RC=4, VALID DU-AL ALET
BE ALETOK
LTR 15,15 If RC=0, ALET IS 0 (PRIMARY)
BNZ BADALET OTHERWISE, ALET IS NOT USEABLE.
.
LA 0,1 BECAUSE ALET IS 0, MUST CHANGE IT TO 1
SAR 1,0 DUE TO THE SPACE-SWITCH

ALETOK EQU *
MVC PARM,8(1) COPY USER PARAMETERS INTO LOCAL STORAGE

BADALET EQU *
.
.

PARM DS CL8 COPY OF USER PARAMETERS
.

Obtaining Storage Outside the Primary Address Space
The STORAGE macro allows you to obtain storage in an address space other than
the primary address space. The program must be in primary mode or AR mode and
in PSW key 0 - 7 or supervisor state. The ALET parameter on the STORAGE
macro identifies the address space.

The following example shows how a program can obtain storage in another address
space, provided it has the proper authorization. The caller uses ALESERV ADD to
obtain an ALET representing the address space (or uses an ALET with the value 1
or 2) and then STORAGE OBTAIN to obtain storage. The example assumes that
the caller passes the STOKEN of the target address space by a pointer in AR/GPR
1 on entry. It also assumes that this program has the proper authorization to the
target address space.

The program requests one page (4096 bytes) of storage above 16 megabytes in
subpool 0 in the target address space.
STOR2 CSECT
STOR2 AMODE 31
STOR2 RMODE ANY

.
* ENTRY LINKAGE

.
BAKR 14,0 SAVE CALLER’S STATUS ON LINKAGE STACK
SAC 512 SWITCH INTO AR MODE
SYSSTATE ASCENV=AR SET GLOBAL BIT INDICATING AR MODE
LAE 12,0(15,0) ESTABLISH ADDRESSABILITY
USING STOR2,12
STORAGE OBTAIN,LENGTH=72 GET STANDARD SAVE AREA

Chapter 5. Using Access Registers 5-33

LAE 13,0(1,0) SET UP SAVE AREA POINTER
MVC 4(4,13),=C’F1SA’ INDICATE IN SAVE AREA THAT CALLER’S

* STATUS IS ON THE LINKAGE STACK
.
EREG R1,R1 RESTORE CALLER’S PARAMETER REGISTER
USING PARMLIST,R1 ESTABLISH ADDRESSABILITY TO

* PARAMETER LIST
MVC ASTOKEN,CSTOKEN COPY STOKEN INTO LOCAL STORAGE
DROP R1 DROP BASING REGISTER
.

* ADD THE ADDRESS SPACE REPRESENTED BY THE TARGET STOKEN TO
* THE DU-AL AS A PUBLIC ENTRY.

.
ALESERV ADD,STOKEN=ASTOKEN,AL=WORKUNIT,ACCESS=PUBLIC, X

ALET=ASALET
.

* NOW OBTAIN ONE PAGE (4096 BYTES) OF STORAGE IN SUBPOOL 0 IN THAT
* ADDRESS SPACE, ABOVE 16MB.

.
STORAGE OBTAIN,LENGTH=4096,SP=0,ALET=ASALET,LOC=ANY,ADDR=ASADDR
.

* SET UP REGISTERS TO POINT AT THE STORAGE JUST OBTAINED.
.
L R4,ASADDR LOAD ADDRESS OF STORAGE INTO GPR4
L R3,ASALET LOAD ALET OF STORAGE INTO GPR3
SAR R4,R3 LOAD ALET INTO AR4
.

* AR/GPR 4 CAN NOW BE USED TO REFERENCE THE STORAGE IN
* THE OTHER ADDRESS SPACE.

.
USING ARSTOR,R4
MVC FIELD1,DATA1 MOVE DATA INTO THE ADDRESS SPACE
MVC FIELD2,DATA2
DROP R4
.

* RELEASE THE STORAGE PREVIOUSLY OBTAINED.
.
STORAGE RELEASE,LENGTH=4096,ALET=ASALET,ADDR=ASADDR,SP=0
.

* REMOVE THE ENTRY FROM OUR ACCESS LIST
.
ALESERV DELETE,ALET=ASALET
.

* EXIT LINKAGE
.
LAE 1,0(13,0) GET ADDRESS OF SAVE AREA
STORAGE RELEASE,ADDR=(1),LENGTH=72 RELEASE THE SAVE AREA
SLR 15,15 SET A RETURN CODE OF ZERO
PR RETURN TO CALLER
.

* VARIABLES AND REGISTERS
.

ASTOKEN DS CL8 STOKEN OF ADDRESS SPACE
ASADDR DS F ADDRESS OF STORAGE IN ADDRESS SPACE
ASALET DS F ALET REPRESENTING ADDRESS SPACE
DATA1 DC CL4’BLUE’
DATA2 DC CL4’PINK’

LTORG
.

R1 EQU 1
R3 EQU 3
R4 EQU 4

.

5-34 z/OS V1R3.0 MVS Extended Addressability Guide

* PARAMETER LIST MAPPING
.

PARMLIST DSECT
CSTOKEN DS CL8 USER’S STOKEN

.
* MAPPING OF STORAGE IN TARGET ADDRESS SPACE

.
ARSTOR DSECT
FIELD1 DS CL4 Area 1
FIELD2 DS CL4 Area 2

END

What Access Lists Can an Asynchronous Exit Routine Use?
If your program issues a macro that causes an asynchronous exit routine to run,
that routine cannot use the DU-AL associated with your program. The system gives
the routine an empty DU-AL for its own use and an EAX value of zero. The routine
can use the PASN-AL associated with the primary address space.

Such asynchronous exit routines include those caused by the ATTACH macro with
the ETXR parameter, the STIMER macro with the EXIT parameter, the SCHEDXIT
macro, and some attention and I/O exit routines.

When control returns to your program from an asynchronous exit routine, the
system deletes the DU-AL associated with the asynchronous routine and restores
your program’s DU-AL and EAX value.

Issuing MVS Macros in AR Mode
Many MVS macro services support callers in both primary and AR modes. When
the caller is in AR mode, the macro service must generate larger parameter lists at
assembly time. The increased size of the list reflects the addition of ALET-qualified
addresses. At assembly time, a macro service that needs to know whether a caller
is in AR mode checks the global bit that SYSSTATE ASCENV=AR sets. Therefore,
it is good programming practice to issue SYSSTATE ASCENV=AR when a program
changes to AR mode and issues macros while in that mode. Then, when the
program returns to primary mode, issue SYSSTATE ASCENV=P to reset the global
bit.

When your program is in AR mode, keep in mind these two facts:

v Before you use a macro in AR mode, check the description of the macro in one
of the following:

– z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

– z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

– z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

– z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO

– z/OS MVS Programming: Assembler Services Reference ABE-HSP

– z/OS MVS Programming: Assembler Services Reference IAR-XCT.

If the description of the macro does not specifically state that the macro supports
callers in AR mode, use the SAC instruction to change the ASC mode and use
the macro in primary mode.

v ARs 14 through 1 are volatile across all macro calls, whether the caller is in AR
mode or primary mode. Don’t count on the contents of these ARs being the same
after the call as they were before.

Chapter 5. Using Access Registers 5-35

Example of Using SYSSTATE

Consider that a program changes ASC mode from primary to AR mode and, while
in AR mode, issues the LINKX and STORAGE macros. When it changes ASC
mode, it should issue the following:
SAC 512
SYSSTATE ASCENV=AR

The LINKX macro generates different code and addresses, depending on the ASC
mode of the caller. During the assembly of LINKX, the LINKX macro service checks
the setting of the global bit. Because the global bit indicates that the caller is in AR
mode, LINKX generates code and addresses that are appropriate for callers in AR
mode.

The STORAGE macro generates the same code and addresses whether the caller
is in AR mode or primary mode. Therefore, the STORAGE macro service does not
check the global bit.

When the program changes back to primary mode, it should issue the following:
SAC 0
SYSSTATE ASCENV=P

Using X-Macros

Some macro services, such as LINK and LINKX, offer two macros, one for callers
in primary mode and one for callers in either primary or AR mode. The name of the
macro for the AR mode caller is the same as the name of the macro for primary
mode callers, except the macro that supports the AR mode caller ends with an “X”.
This book refers to these macros as “X-macros”. The rules for using all X-macros,
except ESTAEX, are:

v Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non X-macros are not valid for callers in AR
mode. For these exceptions, check the macro descriptions in one of the
following:

– z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

– z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

– z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

– z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO

– z/OS MVS Programming: Assembler Services Reference ABE-HSP

– z/OS MVS Programming: Assembler Services Reference IAR-XCT.

v Callers in AR mode should issue the X-macro after issuing the SYSSTATE
ASCENV=AR macro.

If a caller in AR mode issues the non X-macro, the system substitutes the
X-macro and issues a message during assembly that informs you of the
substitution.

IBM recommends that you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a branch
entry. In those cases you should use ESTAE.

5-36 z/OS V1R3.0 MVS Extended Addressability Guide

Note that an X-macro generates a larger parameter list than the corresponding non
X-macro. A program using the X-macros must provide a larger parameter list than if
it used the non X-macro.

If your program must issue macros while it is in AR mode, make sure the macros
support AR mode callers and that SYSSTATE ASCENV=AR is coded. For
information about macros that support AR mode callers and how to issue the
macros correctly, see “Address Space Control (ASC) Mode” in the appropriate
macro description in one of the following:

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

If you rewrite programs and use the X-macro instead of the non X-macro, you must
change both the list and execute forms of the macro. If you change only the
execute form of the macro, the system will not generate the longer parameter list
that the X-macro requires.

Passing Parameters to MVS Macros in AR Mode
The rules for passing ALETs to MVS macros are similar to the rules for passing
ALETs to programs. For programs in AR mode, the system allows you to pass the
following ALETs:

v An ALET with the value of zero, signifying that the parameter data resides in the
caller’s primary address space

v An ALET that indexes to a public entry on the caller’s DU-AL.

Do not pass other ALETs; the system does not support them.

Some of the macros that support callers in AR mode require that parameter lists be
in the primary address space. To learn where the input parameter lists must reside,
see the macro descriptions in one of the following:

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

v z/OS MVS Programming: Assembler Services Reference ABE-HSP.

Some macro services accept control parameters from a program. Do not pass a
parameter that resides at location zero in a data space to a macro service. Some
macros use the value 0 to designate that a parameter list was not specified.

Formatting and Displaying AR Information
The interactive problem control system (IPCS) can format and display AR data. Use
the ARCHECK subcommand to:
v Display the contents of an AR
v Display the contents of an access list entry.

See z/OS MVS IPCS Commands for more information about the ARCHECK
subcommand.

Chapter 5. Using Access Registers 5-37

5-38 z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 6. Creating and Using Data Spaces

A data space is a range of up to two gigabytes of contiguous virtual storage
addresses that a program can directly manipulate through assembler instructions.
Unlike an address space, a data space contains only data; it does not contain
common areas or system data or programs. Program code does not execute in a
data space, although a program can reside in a data space as nonexecutable code.

The DSPSERV macro with the TYPE=BASIC parameter (the default) manages data
spaces. Use this macro to:
v Create a data space
v Release an area in a data space
v Delete a data space
v Expand the amount of storage in a data space currently available to a program.
v Load an area of a data space into central storage
v Page an area of a data space from central storage

A program’s ability to create, delete, and access data spaces depends on whether it
is a problem state program with PSW key 8 - F, a supervisor state program, or a
PSW key 0-7 program. All programs can create, access, and delete the data
spaces they own or created, and can share their data spaces with other programs
running in the same address space. In addition, supervisor state or PSW key 0-7
programs can share their data spaces with programs in other address spaces.
Unless otherwise stated, this chapter describes what the supervisor state or
PSW key 0-7 programs can do.

Use this chapter to help you create, use, and delete data spaces. In addition, four
sources of information can help you understand how to use data spaces:

v Chapter 1, “An Introduction to Extended Addressability” can help you verify that a
data space, rather than a hiperspace would be the best choice for your program.
See “Basic Decision: Data Space or Hiperspace” on page 1-6.

v Chapter 5, “Using Access Registers” on page 5-1, contains many examples of
setting up addressability to data spaces.

v One of the following contains the syntax and parameter descriptions for the
macros that are mentioned in this chapter:

– z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

– z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

– z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

– z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO.

v Principles of Operation contains descriptions of how to use the instructions that
manipulate access registers.

With the arrival of the 64-bit address space, are there still reasons to create
and use data spaces?

Even after z/OS R2, there are still reasons why you would chose to use a data
space. Two reasons are:

v For programs that must run in both z/Architecture and non-z/Architecture
environments, data spaces is the right choice.

v For programs to share virtual storage areas with other programs, the type of data
space called SCOPE=ALL data spaces is the right choice.

© Copyright IBM Corp. 1988, 2002 6-1

There is no need to change any existing programs that create and use data spaces.
Data spaces will continue to be supported.

Referencing Data in a Data Space
To reference the data in a data space, the program must be in access register (AR)
mode. Assembler instructions (such as load, store, add, and move character) move
data in and out of a data space and manipulate data within it. Assembler
instructions can also perform arithmetic operations on the data.

When a program uses the DSPSERV macro to create a data space, the system
returns a STOKEN that uniquely identifies the data space. (Data spaces do not
have ASIDs.) The program then gains access to the data space: it uses the
ALESERV macro to add an entry to an access list and obtain an access list entry
token (ALET). The entry on the access list identifies the newly created data space
and the ALET indexes the entry.

The process of giving the STOKEN to ALESERV, adding an entry to an access list,
and receiving an ALET is called establishing addressability to the data space .
The access list can be one of two types:

v A dispatchable unit access list (DU-AL) — the access list that is associated with
a TCB or SRB

v A primary address space access list (PASN-AL) — the access list that is
associated with an address space

Relationship Between the Data Space and its Owner
Your program can create a data space, but it cannot own the data space. If the unit
of work that represents the program is a TCB, that TCB is the owner of the data
space, unless the program assigns ownership to another TCB. If the unit of work is
an SRB, the program must assign ownership to a TCB. Because of this assignment
of ownership, the owner of the data space and the creator of the data space are not
always the same TCB.

The data space virtual area is available to programs that run under the TCB that
owns the data space and is available, in some cases, to other programs.

When a TCB terminates, the system deletes any data spaces that the TCB owns.
The system swaps a data space in and out as it swaps in and out the address
space that dispatched the owning TCB. Thus, data spaces shared by programs that
run in other address spaces must be owned by TCBs in non-swappable address
spaces.

ALET for
Data Space X

Access List

Data Space X

Data Space X

~ ~~ ~

6-2 z/OS V1R3.0 MVS Extended Addressability Guide

A data space can remain active even after the creating TCB terminates. When the
program creates a data space, it can assign ownership of the data space to a TCB
that will outlast the creating TCB. In this case, the termination of the creating TCB
does not affect the data space.

Because access lists and data spaces belong to units of work, keep in mind the
relationship between the program and the unit of work under which it runs. For
simplicity, however, this chapter describes access lists and data spaces as if they
belong to programs. For example, “a program’s DU-AL” means “the DU-AL that
belongs to the TCB under which a program is running”.

SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces
Data spaces are either SCOPE=SINGLE, SCOPE=ALL, or SCOPE=COMMON,
named after the SCOPE parameter on the DSPSERV CREATE macro.

v SCOPE=SINGLE data spaces

A SCOPE=SINGLE data space with an entry on a PASN-AL can be used by
programs running in the owner’s address space. A SCOPE=SINGLE data space
with an entry on a DU-AL can be used by programs represented by TCBs or
SRBs whose home address space is the same as the owning TCB. It would
typically be used in ways similar to private storage in an address space.

v SCOPE=ALL data spaces

A SCOPE=ALL data space can be used by programs running in the owner’s
primary address space and other address spaces. SCOPE=ALL data spaces
provide a way to share data selectively among programs running in multiple
address spaces.

v SCOPE=COMMON data spaces

A SCOPE=COMMON data space can be used by all programs in the system. It
provides a commonly addressable area similar to the common service area
(CSA). A SCOPE=COMMON data space is sometimes called a common area
data space.

The home address space of the owner of a SCOPE=ALL or SCOPE=COMMON
data space must be non-swappable during the time that other address spaces have
access to the data space.

Rules for Creating, Deleting, and Using Data Spaces
To protect data spaces from unauthorized use, the system uses certain rules to
determine whether a program can create or delete a data space or whether it can
access data in a data space. The rules for problem state programs with PSW key 8
through F differ from the rules for programs that are supervisor state or PSW key 0
through 7. The table on page 6-7 summarizes these rules and the example in
Figure 6-1 on page 6-6 illustrates them.

A program in supervisor state or PSW key 0-7 can:

v Create a data space if its home or primary address space is the same as the
intended owner’s home address space.

v Delete a data space if its primary or home address space is the same as the
owner’s home address space.

v Release an area of a SCOPE=SINGLE data space if its primary or home
address space is the same as the owner’s home address space and its PSW key
is the same as the storage key of the data space. It can release an area of a

Chapter 6. Creating and Using Data Spaces 6-3

SCOPE=ALL or SCOPE=COMMON data space if its PSW key is zero or
matches the storage key of the data space.

v Extend the current size of any data space.

v Page in and out of central storage the storage of any data space.

v Establish addressability to a data space through the ALESERV macro (if the
program does not already have an entry on its DU-AL or a PASN-AL) and obtain
the ALET that indexes the entry. When it adds an entry, the program can specify
whether it wants the entry on its DU-AL or the PASN-AL. A program can add
entries:

– For a SCOPE=SINGLE data space to its DU-AL, if its home address space is
the same as the owner’s home address space

– For a SCOPE=SINGLE data space to its PASN-AL, if the PASN-AL belongs to
the same address space as the owner

– For any SCOPE=ALL data space to its DU-AL and its PASN-AL

– For any SCOPE=COMMON data space to its PASN-AL

On the ALESERV macro, you can take the default for the ACCESS parameter. All
access list entries for data spaces are public (ACCESS=PUBLIC). A public entry
allows a program to access data in a data space, without having to establish
EAX-authority. See “Types of Access List Entries” on page 5-11 for more
information about public entries.

Note that problem state programs with PSW key 8 - F can add entries to their
PASN-ALs for the SCOPE=SINGLE data spaces they own or created. Supervisor
state or PSW key 0-7 programs can add entries on behalf of problem state
programs and pass ALETs to the problem state programs.

v Access data in a data space

Once an entry for the data space is on its DU-AL, a program having the ALET for
the entry can access the data space. Once an entry for the data space is on the
PASN-AL, all programs running with that PASN-AL and having the ALET can
access the data space. Note that data space storage is also subject to storage
key and fetch protection.

A program can attach a subtask and pass a copy of its DU-AL to the subtask.
This action allows the program and the subtask to share the data spaces that
have entries on the DU-AL at the time of the attach.

Example of the Rules for Accessing Data Spaces
Another way of describing the rules for accessing data spaces is through an
example. Figure 6-1 shows two address spaces and two data spaces. The entries
in the PASN-AL and DU-AL are identified.

Two programs run in address space AS1, both of which own data spaces:

v A problem state program, PGM1, running under TCB A that owns
SCOPE=SINGLE data space DS1

PGM1 can access DS1 through the DU-AL, because it runs in problem state.
PGM1 cannot add an entry for DS1 to the PASN-AL.

v A supervisor state program, PGM2, running under TCB B that owns SCOPE=ALL
data space DS2

PGM2 can access DS2 through its PASN-AL. (If PGM1 passes the STOKEN for
DS1 to PGM2, PGM2 could add an entry to the PASN-AL for DS1. If PGM2
passes the ALET for DS2 to PGM1, PGm1 could access DS2 through the
PASN-AL.)

6-4 z/OS V1R3.0 MVS Extended Addressability Guide

Two programs run in address space AS2, neither of which own data spaces:
v A problem state program, PGM3, running under TCB C

PGM3 cannot access either DS1 or DS2.
v A supervisor state program, PGM4, running under TCB D

PGM4 can access DS2 through its DU-AL.

PGM2 has passed a STOKEN for the SCOPE=ALL data space DS2 to PGM4 in
address space AS2. PGM4 used the STOKEN as input to ALESERV, which placed
an entry for DS2 on the DU-AL and returned the ALET. PGM4 could have added
the entry for DS2 to its PASN-AL.

Earlier in this chapter, it was stated that storage within a data space is available to
programs that run under the TCB that owns the data space. The exception to this
statement is when the owning TCB has the data space entry on the PASN-AL and a
program running under the TCB uses a space-switching PC instruction. During the
time that the primary address space is not the owning TCB’s home address space,
the program cannot access the data space. For example, in Figure 6-1 on page 6-6,
consider what happens to PGM2 if it should PC to PGM3. Because the entry for
DS2 is on AS1’s PASN-AL, PGM2 cannot access DS2 while it is running in AS2.

Chapter 6. Creating and Using Data Spaces 6-5

Summary of Rules for Creating, Deleting, and Using Data Spaces
Table 6-1 summarizes the rules for what programs can do with data spaces. The
third column describes what a problem state program can do if it is PSW key 8
through F. The fourth column describes what a supervisor state program or any
program having PSW key 0 through 7 can do.

PGM 1

PGM 3

PGM 2 PGM 4

TCB A

TCB C

SCOPE=SINGLE

SCOPE=ALL

DS1

DS2

TCB B TCB D

ALETDS1 DS F

ALETDS2 DS F
STOKDS2 DS CLB

ALET2 DS F
STOK2 DS CLB

AS1

AS2

DU-AL

PASN-AL

Program state PGM1

has the ALET for DS1

and an entry for DS1

on the DU-AL.

Supervisor state PGM2

has the ALET for DS2

and an entry for DS2

on the PASN-AL. Problem state PGM3

does not have ALETs

DS1 of DS2 and cannot

access them.

Supervisor state PGM3

has the ALET for DS2

and an entry for DS2

on the DU-AL.

DU-AL

DS1

DS2

DS2

Figure 6-1. Example of Rules for Accessing Data Spaces

6-6 z/OS V1R3.0 MVS Extended Addressability Guide

Table 6-1. Creating, Deleting, and Using Data Spaces

Function Type of data space A problem state, ke y 8 - F
program:

A supervisor state or key 0-7
program:

CREATE SCOPE=SINGLE Can create a SCOPE=SINGLE
data space.

Can create the data space if its
primary or home address space is the
same as the intended owner’s home
address space

SCOPE=ALL
SCOPE=COMMON

Cannot create the data spaces. Can create the data space if its
primary or home address space is the
same as the intended owner’s home
address space

DELETE SCOPE=SINGLE Can delete the SCOPE=SINGLE
data spaces it owns or created if its
PSW key matches the storage key
of the data space.

Can delete a SCOPE=SINGLE data
space if its primary or home address
space is the same as the owner’s
home address space.

SCOPE=ALL
SCOPE=COMMON

Cannot delete the data space. Can delete the data space if its
primary or home address space is the
same as the owner’s home address
space.

RELEASE SCOPE=SINGLE Can release storage in the data
spaces it owns or created if its
PSW key matches the storage key
of the data space.

Can release storage in a
SCOPE=SINGLE data space if its
primary or home address space is the
same as the owner’s home address
space and its PSW key matches the
storage key of the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot release the storage. Can release storage in the data space
if its PSW key matches the storage
key of the data space.

EXTEND SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

Can extend the current size if it
owns the data space.

Can extend the current size.

LOAD or OUT SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

Can page areas into (and out of)
central storage from (or to) a data
space created by any task in its
address space.

Can page areas into and out of
central storage.

Add entries to the
DU-AL

SCOPE=SINGLE Can add entries for the
SCOPE=SINGLE data spaces it
owns or created.

Can add entries for a
SCOPE=SINGLE data space if the
caller’s home and owner’s home
address space are the same.

SCOPE=ALL
SCOPE=COMMON

Cannot add the entries. Can add entries for the SCOPE=ALL
(not the SCOPE=COMMON) data
space.

Add entries to the
PASN-AL

SCOPE=SINGLE Can add entries if it owns or
created the data space, and the
data space is not already on the
PASN-AL as a result of an
ALESERV ADD issued by a
problem state program with PSW
key 8 - F.

Can add entries for a
SCOPE=SINGLE data space if its
PASN-AL is the same as the PASN-AL
of the owner’s home address space.

SCOPE=ALL
SCOPE=COMMON

Cannot add entries. Can add entries for a SCOPE=ALL
and a SCOPE=COMMON data space.

Chapter 6. Creating and Using Data Spaces 6-7

Table 6-1. Creating, Deleting, and Using Data Spaces (continued)

Function Type of data space A problem state, ke y 8 - F
program:

A supervisor state or key 0-7
program:

Access a data
space through a
DU-AL or
PASN-AL

SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

Can access a data space through
an access list if the entry for the
data space exists and the program
has the ALET. Data space storage
is subject to storage key and fetch
protection.

Can access a data space through an
access list if the entry for the data
space exists and the program has the
ALET. Data space storage is subject
to storage key and fetch protection.

Creating a Data Space
To create a data space, issue the DSPSERV CREATE macro. MVS gives you
contiguous 31-bit virtual storage of the size you specify and initializes the storage to
hexadecimal zeroes. The entire data space has the storage key that you request,
or, by default, the storage key that matches your own PSW key.

On the DSPSERV macro, you are required to specify:

v The name of the data space (NAME parameter)

To ask DSPSERV to generate a data space name unique to the address space,
use the GENNAME parameter. DSPSERV will return the name it generates at
the location you specify on the OUTNAME parameter. See “Choosing the Name
of the Data Space” on page 6-9.

v A location where DSPSERV can return the STOKEN of the data space (STOKEN
parameter)

DSPSERV CREATE returns a STOKEN that you can use to identify the data
space to other DSPSERV services and to the ALESERV and DIV macros.

Other information you might specify on the DSPSERV macro is:

v A request for a SCOPE=ALL or SCOPE=COMMON data space. If you don’t code
SCOPE, the system creates a SCOPE=SINGLE data space. See
“SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces” on
page 6-3.

v The maximum size of the data space and its initial size (BLOCKS parameter). If
you do not code BLOCKS, the data space size is determined by defaults set by
your installation. In this case, use the NUMBLKS parameter to tell the system
where to return the size of the data space. See “Specifying the Size of the Data
Space” on page 6-9.

v A location where DSPSERV can return the address (either 0 or 4096) of the first
available block of the data space (ORIGIN parameter). See “Identifying the Origin
of the Data Space” on page 6-11.

v A request that the system create a data space where disabled programs can
access data (DREF parameter). See “Creating a Data Space of DREF Storage”
on page 6-13.

v A request that the data space be fetch-protected (FPROT parameter). See
“Protecting Data Space Storage” on page 6-12.

v The storage key of the data space (KEY parameter). Use CALLERKEY to specify
that the storage key of the data space is to match your PSW key (or take the
default for the KEY parameter). See “Protecting Data Space Storage” on
page 6-12.

v The TTOKEN of the TCB to which you assign ownership of the data space
(TTOKEN parameter). See “How SRBs Use Data Spaces” on page 6-29.

6-8 z/OS V1R3.0 MVS Extended Addressability Guide

Choosing the Name of the Data Space
The name you specify on the NAME parameter will identify the data space on some
dump requests and IPCS commands.

Names of data spaces and hiperspaces must be unique within an address space.
You have a choice of choosing the name yourself or asking the system to generate
a unique name for your data space. To keep you from choosing names that it uses,
MVS has some specific rules for you to follow. These rules are listed in the
DSPSERV description under the NAME parameter in z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN.

Use the GENNAME parameter to ask the system to generate a unique name for
your data space. GENNAME=YES generates a unique name that has as its last
one to three characters the first one to three characters of the name you specify on
the NAME parameter.

Example 1

If PAY����� is the name you supply on the NAME parameter and you code
GENNAME=YES, the system generates the following name:
nccccPAY

where the system generates the digit n and the characters cccc, and appends the
characters PAY that you supplied.

Example 2

If J������� is the name you supply on the NAME parameter and you code
GENNAME=YES, the system generates the following name:
nccccJ

GENNAME=COND checks the name you supply on the NAME parameter. If it is
already used for a data space or a hiperspace, DSPSERV supplies a name with the
format described for the GENNAME=YES parameter. To learn the unique name that
the system generates for the data space you are creating, use the OUTNAME
parameter.

Note that the system has a supply of 99,999 names it can generate for data spaces
and hiperspaces for a single address space. If the system tries to generate a name
and finds that it has used up the supply of names, it rejects the program with a
return code of “08” and a reason code of “0012”. The system restores the supply of
names whenever the number of such data spaces and hiperspaces owned by the
address space goes to zero. Therefore, if your program is a batch job and it is
creating a data space, do not:
v Request that the system generate a name (through the GENNAME parameter)

and
v Assign ownership to a TCB that remains for the life of the address space.

Specifying the Size of the Data Space
When you create a data space, you tell the system on the BLOCKS parameter how
large to make that space, the largest size being 524,288 blocks. (The product of
524,288 times 4K bytes is 2 gigabytes.) The addressing range for the data space
depends on the processor. If your processor does not support an origin of zero, the

Chapter 6. Creating and Using Data Spaces 6-9

limit is actually 4096 bytes less than 2 gigabytes. Before you code BLOCKS, you
should know two facts about how an installation controls the use of virtual storage
for data spaces and hiperspaces.

v An installation can set limits on the amount of storage available for each address
space for all data spaces and hiperspaces that have a storage key of 8 through
F. If your request for a data space would cause the installation limit to be
exceeded, the system rejects the request with a nonzero return code and a
reason code.

v An installation sets a default size for data spaces and hiperspaces; you should
know this size. If you do not use the BLOCKS parameter, the system creates a
data space with the default size.

If you create the data space with a storage key of 0 through 7, the system does not
check the size against the total storage already used for data spaces and
hiperspaces. If you create the data space with a storage key of 8 through F, the
system adds the initial size of the space to the cumulative total of all data spaces
and hiperspaces for the address space and checks this total against the installation
limit for an address space.

For information on the IBM defaults and how to change them, see “Limiting Data
Space Use” on page 6-15.

The BLOCKS parameter allows you to specify a maximum size and initial size
value.

v The maximum size identifies the largest amount of storage you will need in the
data space.

v An initial size identifies the amount of the storage you will immediately use.

As you need more space in the data space, you can use the DSPSERV EXTEND
macro to increase the size of the available storage, thus increasing the storage in
the data space that is available for the program. The amount of available storage is
called the current size . (At the creation of a data space, the initial size is the same
as the current size.) When it calculates the cumulative total of data space and
hiperspace storage, the system uses the current size of the data space.

If you know the default size and want a data space smaller than or equal to that
size, use the BLOCKS=maximum size or omit the BLOCKS parameter.

If you know what size data space you need and are not concerned about exceeding
the installation limit, set the maximum size and the initial size the same.
BLOCKS=0, the default, establishes a data space with the maximum size and the
initial size both set to the default size.

If you do not know how large a data space (with storage key 8 - F) you will
eventually need or you are concerned with exceeding the installation limit, set the
maximum size to the largest size you might possibly use and the initial size to a
smaller amount, the amount you currently need.

Use the NUMBLKS parameter to request that the system return the size of the data
space it creates for you. You would use NUMBLKS, for example, if you did not
specify BLOCKS and do not know the default size.

6-10 z/OS V1R3.0 MVS Extended Addressability Guide

Figure 6-2 shows an example of using the BLOCKS parameter to request a data
space with a maximum size of 100,000 bytes of space and a current size of 20,000
bytes.

As your program uses more of the data space storage, it can use DSPSERV
EXTEND to extend the current size. “Extending the Current Size of a Data Space”
on page 6-19 describes extending the current size and includes an example of how
to extend the current size of the data space in Figure 6-2.

Identifying the Origin of the Data Space
Some processors do not allow the data space to start at zero; these data spaces
start at address 4096 bytes. When you use DSPSERV CREATE, you can count on
the origin of the data space staying the same within the same IPL. To learn the
starting address, either (1) create a data space of 1 block of storage more than you
need and then assume that the data space starts at 4096 or (2) use the ORIGIN
parameter. If you use ORIGIN, the system returns the beginning address of the
data space at the location you specify.

Unless you specify a size of 2 gigabytes and the processor does not support an
origin of zero, the system gives you the size you request, regardless of the location
of the origin. An example of the problem you want to avoid in addressing data
space storage is described as follows:

Suppose a program creates a data space of 1 megabyte and assumes the data
space starts at address zero when it really begins at the address 4096. Then, if
the program uses an address lower than 4096 in the data space, the system
abends the program.

Example of Creating a Data Space
In the following example, a program creates a data space named TEMP. The
system returns the origin of the data space (either 0 or 4096) at location
DSPCORG.

DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
BLOCKS=DSPBLCKS,ORIGIN=DSPCORG

.

Dataspace

DSPSERV CREATE, . . .BLOCKS=(DSPMAX,DSPINIT)

DSPMAX DC A((100000+4095)/4096)
DSPINIT DC A((20000+4095)/4096)

DATA SPACE MAXIMUM SIZE
DATA SPACE INITIAL SIZE

Current size
20,000 bytes

Not available for immediate
use by the program.

Available for immediate
use by the program.

Maximum size
100,000 bytes

Figure 6-2. Example of Specifying the Size of a Data Space

Chapter 6. Creating and Using Data Spaces 6-11

DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE

The data space that the system creates has the same storage protection key as the
PSW key of the caller.

Protecting Data Space Storage
If the creating program wants the data space to have read-only access, it can use
the FPROT and KEY parameters on DSPSERV. KEY assigns the storage key for
the data space and FPROT specifies whether the storage in the data space is to be
fetch-protected. Storage protection and fetch protection rules apply for the entire
data space. For example, a program cannot reference storage in a fetch-protected
data space without holding the PSW key that matches the storage key of the data
space or PSW key 0.

Figure 6-3 on page 6-13 shows a SCOPE=ALL data space DSX with a storage key
of 5, owned by a subsystem. PGM1 and PGM2, with PSW keys of 8, have entries
for the data space on their DU-ALs and have the ALETs for these entries. However,
their PSW keys do not match the storage key of the data space. Their ability to
access data in DSX depends on how the creating program coded the FPROT
parameter on the DSPSERV macro.

v If the creating program specified no fetch-protection (FPROT=NO), PGM1 and
PGM2 can fetch from but not store into the data space.

v If the creating program specified fetch-protection (FPROT=YES), PGM1 and
PGM2 can neither fetch from nor store into the data space.

Figure 6-3 shows one way PGM1 and PGM2 can gain fetch and store capability to
the data space. The subsystem provides a PC routine with a PSW key of 5 in the
common area. To access the data space, the two users PC into the subsystem’s
address space and have access to its data space.

6-12 z/OS V1R3.0 MVS Extended Addressability Guide

Creating a Data Space of DREF Storage
Through the DSPSERV macro, supervisor state and PSW key 0 - 7 programs can
create a data space that consists of disabled reference (DREF) storage. DREF
storage is storage that can be referenced by callers that are running disabled.
DREF storage uses more system resources than non-DREF storage because the
system does not page DREF storage out to auxiliary storage. Instead, it uses
central storage (and expanded storage, if your processor has it). IBM recommends
that you not use DREF storage when pageable storage is sufficient.

To request DREF storage, code DREF=YES on the DSPSERV CREATE macro. A
data space with DREF storage can be SCOPE=SINGLE, SCOPE=ALL, or
SCOPE=COMMON.

Establishing Addressability to a Data Space
Creating a data space does not give you addressability to that data space. Before
you can use the data space, you must issue the ALESERV macro, which adds an
entry to an access list and returns the ALET that indexes the entry. Examples of this
process appear in this chapter; Chapter 5, “Using Access Registers”, contains
additional examples.

PGM 1 PGM 2

User address space User address space

SCOPE=ALL

Data Space

owned by

subsystem

(storage key 5)

(FPROT=YES)

(PSW key 8) (PSW key 8)

PC PC

ALETDSX DC F

PC routine
(PSW key 5)

COMMON AREA

ALETDSX DC F

AS1 AS2

DSX

DU-AL DU-AL

DSX DSX

Figure 6-3. Protecting Storage in a Data Space

Chapter 6. Creating and Using Data Spaces 6-13

When you use ALESERV, you can omit the ACCESS parameter, which specifies
whether an access list entry is public or private. Data space entries are always
public, the default for ACCESS.

Example of Establishing Addressability to a Data Space
In the following example, a program establishes addressability to a data space
named TEMP. Input to the ALESERV macro is the STOKEN that the DSPSERV
macro returned. ALESERV places an entry on the DU-AL and returns the ALET for
the data space.

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
.

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

Managing Data Space Storage
Managing storage in data spaces differs from managing storage in address spaces.
Keep the following advisory notes in mind:

v When you create a data space, request a maximum size large enough to handle
your application’s needs and, optionally, an initial size large enough to meet its
immediate needs.

v You can use callable cell pool services to keep track of data space storage. (The
STORAGE, GETMAIN, FREEMAIN, or CPOOL macros do not manage data
space storage.) For information about how to use callable cell pool services and
an example of its use with data spaces, see “Using Callable Cell Pool Services
to Manage Data Space Areas” on page 6-17.

v If you are not going to use an area of a data space again, release that area to
free the resources that back the area.

v When you are finished using a data space, remove its entry from the access list
and delete the data space.

Managing Data Space Storage Across a Checkpoint/Restart Operation
A program can use checkpoint/restart while it has one or more entries for a data
space on its access list (DU-AL or PASN-AL). If the program has specified on the
ALESERV macro that the system is to ignore entries made to the access list for the
data space for checkpoint/restart processing (CHKPT=IGNORE), the CHKPT macro
processes successfully.

A program that specifies CHKPT=IGNORE assumes full responsibility for managing
the data space storage. Managing the data space storage includes the following:

v If any program depends on the contents of the data space and the data cannot
be recreated or obtained elsewhere, the responsible program must save the
contents of the data space prior to the checkpoint operation.

v Once the checkpoint operation has completed, the responsible program must
perform the following during restart processing to successfully manage the data
space storage.

1. Ensure that the data space exists. The original data space might or might not
exist. If the original data space does not exist, the responsible program must
perform a DSPSERV CREATE to recreate the data space.

2. Perform an ALESERV ADD of the data space, original or recreated, to the
program’s access list to obtain a new ALET.

6-14 z/OS V1R3.0 MVS Extended Addressability Guide

3. If, in addition to having a dependency on the data space, any program also
depends on the contents of the data space storage, the responsible program
must refresh the contents of the data space storage. The program must use
the new ALET to reference the data space.

4. The responsible program must make the new ALET available to any program
that has a dependency on the data space. The STOKEN, changed or
unchanged, must be made available to any program that needs to perform an
ALESERV ADD to access the data space.

See z/OS DFSMS Checkpoint/Restart for more information about the CHKPT
macro.

Limiting Data Space Use
The use of data spaces consumes system resources such as virtual, processor, and
auxiliary storage. Programmers responsible for tuning and maintaining MVS can
control the use of these resources. Through the system management facility (SMF)
installation exit IEFUSI, an installation can set limits on the amount of virtual
storage that programs in each address space can use for data spaces and
hiperspaces.

For information on using IEFUSI, see z/OS MVS Installation Exits.

Serializing Use of Data Space Storage
At many installations, users must share access to data in a data space. Users who
are updating data for common use by other programs need exclusive access to that
data during the updating operation. If several users tried to update the same data at
the same time, the result would be incorrect or damaged data. To protect the
integrity of the data, you might need to serialize access to the data in the data
space.

Serializing the use of the storage in a data space requires methods like those you
would use to serialize the use of virtual storage in an address space. Use the ENQ
and DEQ macros, compare and swap operations, or establish your own protocol for
serializing data space use.

Examples of Moving Data into and out of a Data Space
When using data spaces, you sometimes have large amounts of data to transfer
between the address space and the data space. This section contains examples of
two subroutines, both named COPYDATA, that show you how to use the Move
(MVC) or Move Long (MVCL) instruction to move a variable number of bytes into
and out of a data space. (You can also use the examples to help you move data
within an address space or within a data space.) The two examples perform exactly
the same function; both are included here to show you the relative coding effort
required to use each instruction.

The use of registers for the two examples is as follows:
Input: AR/GR 2 Target area location

AR/GR 3 Source area location
GR 4 Signed 32 bit length of area

(Note: A negative length is treated as zero.)
GR 14 Return address

Output: AR/GR 2-14 Restored
GR 15 Return code of zero

Chapter 6. Creating and Using Data Spaces 6-15

The routines can be called in either primary or AR mode; however, during the time
they manipulate data in a data space, they must be in AR mode. The source and
target locations are assumed to be the same length (that is, the target location is
not filled with a padding character).

Example 1: Using the MVC Instruction

The first COPYDATA example uses the MVC instruction to move the specified data
in groups of 256 bytes:
COPYDATA DS 0D

BAKR 14,0 SAVE CALLER’S STATUS
LAE 12,0(0,0) BASE REG AR
BALR 12,0 BASE REG GR
USING *,12 ADDRESSABILITY
.
LTR 4,4 IS LENGTH NEGATIVE OR ZERO?
BNP COPYDONE YES, RETURN TO CALLER
.
S 4,=F’256’ SUBTRACT 256 FROM LENGTH
BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO

* THEN GO COPY LAST PART

.
COPYLOOP DS 0H

MVC 0(256,2),0(3) COPY 256 BYTES
LA 2,256(,2) ADD 256 TO TARGET ADDRESS
LA 3,256(,3) ADD 256 TO SOURCE ADDRESS
S 4,=F’256’ SUBTRACT 256 FROM LENGTH
BP COPYLOOP IF LENGTH STILL GREATER THAN

* ZERO, THEN LOOP BACK

COPYLAST DS 0H
LA 4,255(,4) ADD 255 TO LENGTH
EX 4,COPYINST EXECUTE A MVC TO COPY THE

* LAST PART OF THE DATA
B COPYDONE BRANCH TO EXIT CODE

COPYINST MVC 0(0,2),0(3) EXECUTED INSTRUCTION

COPYDONE DS 0H
.

* EXIT CODE
LA 15,0 SET RETURN CODE OF 0
PR RETURN TO CALLER

Example 2: Using the MVCL Instruction

The second COPYDATA example uses the MVCL instruction to move the specified
data in groups of 1048576 bytes:
COPYDATA DS 0D

BAKR 14,0 SAVE CALLER’S STATUS
LAE 12,0(0,0) BASE REG AR
BALR 12,0 BASE REG GR
USING *,12 ADDRESSABILITY
.
LA 6,0(,2) COPY TARGET ADDRESS
LA 7,0(,3) COPY SOURCE ADDRESS
LTR 8,4 COPY AND TEST LENGTH
BNP COPYDONE EXIT IF LENGTH NEGATIVE OR ZERO
.
LAE 4,0(0,3) COPY SOURCE AR/GR
L 9,COPYLEN GET LENGTH FOR MVCL
SR 8,9 SUBTRACT LENGTH OF COPY
BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO

* THEN GO COPY LAST PART
.

6-16 z/OS V1R3.0 MVS Extended Addressability Guide

COPYLOOP DS 0H
LR 3,9 GET TARGET LENGTH FOR MVCL
LR 5,9 GET SOURCE LENGTH FOR MVCL
MVCL 2,4 COPY DATA
ALR 6,9 ADD COPYLEN TO TARGET ADDRESS
ALR 7,9 ADD COPYLEN TO SOURCE ADDRESS
LR 2,6 COPY NEW TARGET ADDRESS
LR 4,7 COPY NEW SOURCE ADDRESS
SR 8,9 SUBTRACT COPYLEN FROM LENGTH
BP COPYLOOP IF LENGTH STILL GREATER THAN

* ZERO, THEN LOOP BACK
.

COPYLAST DS 0H
AR 8,9 ADD COPYLEN
LR 3,8 COPY TARGET LENGTH FOR MVCL
LR 5,8 COPY SOURCE LENGTH FOR MVCL
MVCL 2,4 COPY LAST PART OF THE DATA
B COPYDONE BRANCH TO EXIT CODE

COPYLEN DC F’1048576’ AMOUNT TO MOVE ON EACH MVCL
COPYDONE DS 0H

.
* EXIT CODE

LA 15,0 SET RETURN CODE OF 0
PR RETURN TO CALLER

Programming Notes for Example 2

v When you are in AR mode, do not use AR/GPR 0 in the MVCL instruction. In
Example 2, the MVCL instruction uses GPRs 2, 3, 4, and 5.

v The maximum amount of data that one execution of the MVCL instruction can
move is 16,777,215 bytes.

Using Callable Cell Pool Services to Manage Data Space Areas
You can use the callable cell pool services to manage the virtual storage of a data
space. Callable cell pool services allow you to divide data space storage into areas
(cells) of the size you choose. Specifically, you can
v Create cell pools within a data space
v Expand a cell pool, or make it smaller
v Make the cells available for use by your program or by other programs

A cell pool consists of three different areas:
v One anchor
v Up to 65,000 extents
v Cells, all of which are the same size

The anchor and the extents allow callable cell pool services to keep track of the cell
pool.

This section gives an example of one way a program would use the callable cell
pool services. This example has only one cell pool with one extent. In the example,
you will see that the program has to reserve storage for the anchor and the extent
and get their addresses.

For more information on how to use the services and an example that includes
assembler instructions, see the chapter on callable cell pool services in z/OS MVS
Programming: Assembler Services Guide.

Example of Using Callable Cell Pool Services with a Data Space

Chapter 6. Creating and Using Data Spaces 6-17

Assume that you have an application that requires up to 4,000 records that are
each 512 bytes in length. You have decided that a data space is the best place to
hold this data. Callable cell pool services can help you build a cell pool, each cell
having a size of 512 bytes. The steps are as follows:

1. Create a data space (DSPSERV CREATE macro)

Specify a size large enough to hold 2,048,000 bytes of data (4000 times 512)
plus the data structures that callable cell pool services need.

2. Add the data space to an access list (ALESERV macro)

The choice of DU-AL or PASN-AL depends on how you plan to share the data
space.

3. Reserve storage for the anchor and obtain its address

The anchor (of 64 bytes) can be in the address space or the data space. In this
example, the anchor is in the data space.

4. Initialize the anchor (CSRPBLD service) for the cell pool

Input to CSRPBLD includes the ALET of the data space, the address of the
anchor, the name you assign to the pool, and the size of each cell (in this case,
512 bytes). Because the anchor is in the data space, the caller must be in AR
mode.

5. Reserve storage for the extent and obtain the address of the extent

The size of the extent is 128 bytes plus one byte for every eight cells. In this
example, adding 128 to 500 (that is, 4000 divided by 8) equals 628 bytes. The
system then rounds up to a doubleword making the extent 632 bytes.

6. Obtain the address of the beginning of the cell storage

Add the size of the anchor (64 bytes) and the size of the extent (632) to get the
location where the cell storage can start. You might want to make this starting
address on a given boundary, such as a doubleword or page.

7. Add an extent for the cell pool and establish a connection between the extent
and the cells (CSRPEXP service)

Input to CSRPEXP includes the ALET for the data space, the address of the
anchor, the address of the extent, the size of the extent (in this case, 632
bytes), and the starting address of the cell storage. Because the extent is in the
data space, the caller must be in AR mode.

At this point, the cell pool structures are in place and users can begin to request
cells. Figure 6-4 on page 6-19 describes the areas you have defined in the data
space.

6-18 z/OS V1R3.0 MVS Extended Addressability Guide

A program that has addressability to the data space can then obtain a cell (or cells)
through the CSRPGET service. Input to CSRPGET includes the ALET of the space
and the address of the anchor. CSRPGET returns the address of the cell (or cells) it
allocates.

Programming Notes for the Example

v The origin of the data space might not be zero for the processor the program is
running on. To allow the program to run on more than one processor, use an
origin of 4K bytes or use the ORIGIN parameter on DSPSERV to obtain the
address of the origin.

v If you need more than one extent, you might have a field that contains the
ending address of the last cell pool storage. A program then could use that
address to set up another extent and more cells.

v To use callable cell pool services, the caller must be executing in a state or mode
or key in which it can write to the storage containing the anchor and the extent
data areas.

v The anchor and the extents must be in the same address space or data space.
The cells can be in another space.

Extending the Current Size of a Data Space
When you create a data space and specify an initial size smaller than the maximum
size, you can use DSPSERV EXTEND to increase the current size as your program
uses more storage in the data space. The BLOCKS parameter specifies the amount
of storage you want to add to the current size of the data space.

The system increases the data space by the amount you specify, unless that
amount would cause the system to exceed one of the following:

v The data space maximum size, as specified by the BLOCKS parameter on
DSPSERV CREATE when the data space was created

ALET

AR

Access List

Data Space

}
}
}

The pool of
4000 cells,
each 512
bytes in size

2048000 bytes

632 bytes

64 bytes

extent

anchor

Figure 6-4. Example of Using Callable Cell Pool Services for Data Spaces

Chapter 6. Creating and Using Data Spaces 6-19

v The installation limit for the combined total of data space and hiperspace storage
with storage key 8 -F per address space. These limits are either the system
default or are set in the installation exit IEFUSI.

If one of those limits would be exceeded, the VAR parameter tells the system how
to satisfy the EXTEND request.

v VAR=YES (the variable request) tells the system to extend the data space as
much as possible, without exceeding the limits set by the data space maximum
size or the installation limits. In other words, the system extends the data space
to one of the following sizes, depending on which is smaller:

– The maximum size specified on the BLOCKS parameter

– The largest size that would still keep the combined total of data space and
hiperspace storage within the installation limit.

v VAR=NO (the default) tells the system to:

– Abend the caller, if the extended size would exceed the maximum size

– Reject the request, if the data space has storage key 8 - F and the request
would exceed the installation limits

Consider the data space in Figure 6-2 on page 6-11, where the current (and initial)
size is 20,000 bytes and the maximum size is 100,000 bytes. To increase the
current size to 50,000 bytes, adding 30,000 bytes to the current size, the creating
program would code the following:

DSPSERV EXTEND,STOKEN=DSSTOK,BLOCKS=DSBLCKS
.

DSDELTA EQU 30000 30000 BYTES OF SPACE
DSBLCKS DC A((DSDELTA+4095)/4096) NUMBER OF BLOCKS ADDED TO DATA SPACE
DSSTOK DS CL8 STOKEN RETURNED FROM DSPSERV CREATE

The storage the program can use would then be 50,000 bytes, as shown in
Figure 6-5.

If you use VAR=YES when you issue the EXTEND request, use NUMBLKS to find
out the size by which the system extended the data space.

Deleting a Data Space
When a task doesn’t need the data space any more, it can free the virtual storage
and remove the entry from the access list.

Data space

Current size
50,000 bytes

Maximum size
100,000 bytes

Figure 6-5. Example of Extending the Current Size of a Data Space

6-20 z/OS V1R3.0 MVS Extended Addressability Guide

A problem program with PSW key 8 - F can delete only the data spaces it created
or owns, provided it has a PSW key that matches the storage key of the data
space.

Example of Deleting a Data Space

The following example shows you how to delete a data space entry from an access
list and then delete the data space.

ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
.

DSPCALET DS F DATA SPACE ALET
DSPCSTKN DS CL8 DATA SPACE STOKEN

IBM recommends that you explicitly remove the entry for a data space from the
access list and delete the space before the owning task terminates. This frees up
resources when they are no longer needed, and avoids excess processing at
termination time. However, if you don’t, MVS automatically does it for you at
termination time.

Example of Creating, Using, and Deleting a Data Space
This section contains a complete example of a how a problem program creates,
establishes addressability to, uses, and deletes the data space named TEMP. The
first lines of code create the data space and establish addressability to the data
space. To keep the example simple, the code does not include the checking of the
return code from the DSPSERV macro. However, you should always check the
return codes after issuing the macro.

The lines of code in the middle of the example (under the comment “MANIPULATE
DATA IN THE DATA SPACE”) illustrate how, with the code in AR mode, the familiar
assembler instructions store, load, and move a simple character string into the data
space and move it within the data space. The example ends with the program
deleting the data space entry from the access list, deleting the data space, and
returning control to the caller.
DSPEXMPL CSECT
DSPEXMPL AMODE 31
DSPEXMPL RMODE ANY

BAKR 14,0 SAVE CALLER’S STATUS ON STACK
SAC 512 SWITCH INTO AR MODE
SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
.

* ESTABLISH AR/GPR 12 AS BASE REGISTER
.
LAE 12,0 SET BASE REGISTER AR
BASR 12,0 SET BASE REGISTER GPR
USING *,12

* CREATE THE DATA SPACE AND ADD THE ENTRY TO THE ACCESS LIST
.
DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X

BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
.
.

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
.
LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
USING DSPCMAP,2 INFORM ASSEMBLER

Chapter 6. Creating and Using Data Spaces 6-21

.
* MANIPULATE DATA IN THE DATA SPACE

.
L 3,DATAIN
ST 3,DSPWRD1 STORE INTO DATA SPACE WRD1
.
MVC DSPWRD2,DATAIN COPY DATA FROM PRIMARY SPACE

* INTO THE DATA SPACE
MVC DSPWRD3,DSPWRD2 COPY DATA FROM ONE LOCATION

* IN THE DATA SPACE TO ANOTHER
MVC DATAOUT,DSPWRD3 COPY DATA FROM DATA SPACE

* INTO THE PRIMARY SPACE
.

* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
.
ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
.
PR RETURN TO CALLER
.

DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
DATAIN DC CL4’ABCD’
DATAOUT DS CL4
*
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3

END

Note that you cannot code ACCESS=PRIVATE on the ALESERV macro when you
request an ALET for a data space; all data space entries are public.

Creating and Using SCOPE=COMMON Data Spaces
The SCOPE=COMMON data space provides your programs with virtual storage
that is addressable from all address spaces and all programs. In many ways, it is
the same as the common service area (CSA) of an address space. You might use a
SCOPE=COMMON data space instead of CSA because:

v A SCOPE=COMMON data space offers up to two gigabytes of commonly
addressable virtual storage for data (but not executable code). The CSA offers a
much smaller amount of storage.

v The CSA is a limited resource; because it is a part of all address spaces, the use
of this virtual storage area reduces the amount of common area available for all
programs.

To create this space, use the SCOPE=COMMON parameter on DSPSERV
CREATE. You can use any of the parameters on that macro to establish the
characteristics of that space.

To gain addressability to the space, issue the ALESERV ADD macro with the
AL=PASN parameter. ALESERV ADD then adds an entry for the data space to the
caller’s PASN-AL and returns the ALET for that entry. Additionally, ALESERV ADD
adds the same entry to every PASN-AL in the system. As new address spaces

6-22 z/OS V1R3.0 MVS Extended Addressability Guide

come into the system, their PASN-ALs have this entry on them. All programs use
the same ALET to access the data space. In other words, with the entry on all
PASN-ALs, programs in other address spaces do not have to issue the ALESERV
ADD macro. However, the creating program must pass the ALET for the data space
to the other programs.

The use of the virtual storage in the SCOPE=COMMON data space is similar to the
use of the CSA. A program wanting to share CSA storage with another program has
to pass the address of that area to the other program; the creator of the
SCOPE=COMMON data space has to pass the ALET value to the other program.
(It might also have to tell the other program the origin of the data space.)

Figure 6-6 shows an example of a SCOPE=COMMON data space named COMDS
that PROG1 created. PROG1 uses ALESERV ADD to add an entry to its PASN-AL.
Because COMDS is SCOPE=COMMON,that same entry appears on all PASN-ALs
in the system, plus all PASN-ALs that will exist from the time the entry for the
SCOPE=COMMON data space is added to the access list until the data space
terminates. PROG1 has the ALET for the entry. To give access to COMDS to
programs in the other address spaces, PROG1 passes the ALET to the other
programs.

Programming Considerations : When you use SCOPE=COMMON data spaces,
keep in mind the following advice:

PROG1

PROG 2
DSPSERV . . .
ALESERV . . .

STOKCOM DS CLB
ALETCOM DS F

COMMON AREA

SCOPE=COMMON

COMDS

ALCOM DS F

PASN-AL
PASN-AL

PASN-AL

COMDS
COMDS

COMDS

AS1 AS2 AS3

Figure 6-6. Example of Using a SCOPE=COMMON Data Space

Chapter 6. Creating and Using Data Spaces 6-23

v Use the SCOPE=COMMON data space when your program has large amounts
of data that it wants to share across multiple address spaces. For example, to
share more than 10 megabytes of commonly addressable data, consider using a
SCOPE=COMMON data space. To use less than 10 megabytes, consider using
CSA.

v To make sure problem state programs cannot access the SCOPE=COMMON
data space, use the FPROT and KEY parameters to assign fetch protection and
a specific storage key.

For example, consider that PROG1 in Figure 6-6 on page 6-23 used the following
parameters on DSPSERV when it created COMDS:
FPROT=YES,KEY=5

In this case, only programs with PSW key 5 or PSW key 0 can access the data
in COMDS. A TSO/E user (with PSW key 8) would then be unable to either store
into or fetch from the data space.

v The system can reuse the ALET associated with a SCOPE=COMMON data
space after the space terminates. Therefore, manage the termination and reuse
of ALETs for the SCOPE=COMMON data space. This action is described in
“ALET Reuse by the System” on page 5-25.

v To help solve system problems and error conditions, use the data space dumping
services to dump appropriate areas of the SCOPE=COMMON data space. See
“Dumping Storage in a Data Space” on page 6-35 for information about dumping
data space areas.

Your installation can use the IEASYSxx member of SYS1.PARMLIB to set limits on
the total number of SCOPE=COMMON data spaces available to programs. For
information about how to set up this member, see z/OS MVS Initialization and
Tuning Reference.

Attaching a Subtask and Sharing Data Spaces with It
A program, whether in supervisor state or problem state, can use the
ALCOPY=YES parameter on the ATTACH or ATTACHX macro to attach a subtask
and pass a copy of its DU-AL to this subtask. In this way, the program can share
data spaces or hiperspaces with a program running under the subtask. The two
programs both have access to the address/data spaces and hiperspaces that have
DU-AL entries at the time of the ATTACH or ATTACHX macro invocation. Note that
it is not possible to pass only a part of the DU-AL.

A program can use the ETXR option on ATTACH or ATTACHX to specify the
address of an end-of-task routine to be given control after the new task is normally
or abnormally terminated. The exit routine receives control when the originating task
becomes active after the subtask is terminated. The routine runs asynchronously
under the originating task. Upon entry, the routine has an empty dispatchable unit
access list (DU-AL). To establish addressability to a data space created by the
originating task and shared with the terminating subtask, the routine can use the
ALESERV macro with the ADD parameter, and specify the STOKEN of the data
space.

The following example, represented by Figure 6-7, assumes that program PGM1
(running under TCBA) has created a SCOPE=SINGLE data space DS1 and
established addressability to it. Its DU-AL has several entries on it, including one for
DS1. PGM1 uses the ATTACHX macro to attach subtask TCBB. PGM1 uses the
ALCOPY=YES parameter to pass a copy of its DU-AL to TCBB. It can also pass

6-24 z/OS V1R3.0 MVS Extended Addressability Guide

ALETs in a parameter to PGM2. Upon return from ATTACHX, PGM1 and PGM2
have access to the same data/address spaces.

The figure shows the two programs, PGM1 and PGM2, sharing the same data
space.

Example of Attaching a Task and Passing a DU-AL

The following example shows you how TCBA attaches TCBB and passes its DU-AL:
DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG
ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET
ATTACHX EP=PGM2,ALCOPY=YES

.
DSNAME DC CL8’MYDSPACE’ DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F ORIGIN RETURNED
DSSIZE DC F’2560’ DATA SPACE 10 MEGABYTES IN SIZE

The two DU-ALs do not necessarily stay identical; after the attach, PGM1 and
PGM2 are free to add and delete entries on their own DU-ALs.

If TCBA terminates, the system deletes the data space that belonged to TCBA and
terminates PGM2.

Sharing Data Spaces among Problem State Programs with PSW
Key 8 - F

One way many problem state programs with PSW key 8 - F can share the data in a
data space is by placing the entry for the data space on the PASN-AL and obtaining
the ALET. In this way, the programs can pass the ALET to other problem state
programs in the address space, allowing them to share the data in the data space.

The following example describes a problem state program with PSW key 8 - F
creating a data space and sharing the data in that space with other programs in the
address space. Additionally, the program assigns ownership of the data space to its
job step task. This assignment allows the data space to be used by other programs
even after the creating program’s task terminates. In the example, PGM1 creates a
10-megabyte data space named SPACE1. It uses the TTOKEN parameter on

Linkage Stack

(unstack)
(stack)

Current linkage
stack entry }

Program 1 Program 2

call return

Figure 6-7. Two Programs Sharing a SCOPE=SINGLE Data Space

Chapter 6. Creating and Using Data Spaces 6-25

DSPSERV to assign ownership to its job step task. Before it issued the DSPSERV
CREATE, however, it had to find out the TTOKEN of its job step task. To do this, it
issued the TCBTOKEN macro.

TCBTOKEN TTOKEN=JSTTTOK,TYPE=JOBSTEP
.
DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG,

TTOKEN=JSTTTOK
ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=PASN

.

.
DSNAME DC CL8’SPACE1 ’ DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F ORIGIN RETURNED
DSSIZE DC F’2560’ DATA SPACE 10 MEGABYTES IN 4K UNITS
JSTTTOK DS CL8 TTOKEN OF JOB STEP TASK

Unless PGM1 or the job step TCB explicitly deletes the data space, the system
deletes the data space when the job step task terminates.

Note that when PGM1 issues the ALESERV ADD to add the entry for DS1 to the
PASN-AL, the system checks to see if an entry for DS1 already exists on the
PASN-AL. If an entry already exists, and a problem state program with PSW key 8 -
F added the entry, the system rejects the ALESERV ADD request. However, PGM1
can still access the data space. The system will simply not create a duplicate entry.

Mapping a Data-in-Virtual Object to a Data Space
Through data-in-virtual, your program can map a data-in-virtual object to a data
space. The data-in-virtual object must be a VSAM linear data set. Use DIV macros
to set up the relationship between the object and the data space. Setting up the
relationship between the object and the data space is called “mapping”. In this
case, the virtual storage area through which you view the object (called the
“window”) is in the data space. The STOKEN parameter on the DIV MAP macro
identifies the data space.

The task that issues the DIV IDENTIFY owns the pointers and structures associated
with the ID that DIV returns. Any program can use DIV IDENTIFY; however, the
system checks the authority of programs that try to use subsequent DIV services for
the same ID.

For problem state programs with PSW ke y 8 - F, data-in-virtual allows only the
issuer of the DIV IDENTIFY to use other DIV services for the ID. That means, for
example, that if a problem state program with PSW key 8 issues the DIV IDENTIFY,
another problem state program with PSW key 8 cannot issue DIV MAP for the
same ID. The issuer of DIV IDENTIFY can use DIV MAP to map a VSAM linear
data set to a data space window, providing the program owns the data space.

Supervisor state programs or problem state programs with PSW ke y 0 - 7
(called “authorized programs” in this section) can issue DIV IDENTIFY and then
have subtasks of that task use the DIV services (except the ACCESS service) for
the same ID. The subtasks must also be authorized. This means that an authorized
program can issue a DIV IDENTIFY and an authorized subtask can issue the DIV
MAP for that ID.

6-26 z/OS V1R3.0 MVS Extended Addressability Guide

Table 6-2 shows what data-in-virtual requires of the tasks that represent the
authorized programs that issue the DIV macros. The table does not show the
IDENTIFY service because data-in-virtual does not have restrictions on this service.

Table 6-2. Requirements for Authorized Programs using the DIV Services with Data Spaces

ACCESS MAP SAVE UNIDENTIFY,
UNACCESS, UNMAP,
RESET

Object is a linear
data set, window
is in a data space

Task that issued the
DIV IDENTIFY.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. (See
Notes.)

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the data space.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the data space.

Notes:

v If the program is in supervisor state or PSW key 0 - 7, any task within the caller’s primary address space can own
the data space.

v If the program is APF-authorized, but not supervisor state or PSW key 0 - 7, the caller must own or be the creator
of the data space.

Your program can map one data-in-virtual object into more than one data space. Or,
it can map several data-in-virtual objects within a single data space. In this way,
data spaces can provide large reference areas available to your program.

Example of Mapping a Data-in-Virtual Object to a Data Space

Figure 6-8 shows a data-in-virtual object mapped into a data space. The “window” is
the entire data space.

The following example maps a data-in-virtual object into the data space illustrated in
Figure 6-8. The size of the data space is 10 megabytes, or 2560 blocks. (A block is
4K bytes.)
* CREATE A DATA SPACE, ADD AN ACCESS LIST ENTRY FOR IT
* AND MAP A DATA-IN-VIRTUAL OBJECT INTO DATA SPACE STORAGE
.
DSPSERV CREATE,NAME=DSNAME,STOKEN=DSSTOK,BLOCKS=DSSIZE,ORIGIN=DSORG
ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=WORKUNIT,ACCESS=PUBLIC

DS1
DS1

Permanent Object

VSAM linear
data set

Program

Address Space

window

DU-AL

Figure 6-8. Example of Mapping a Data-in-Virtual Object to a Data Space

Chapter 6. Creating and Using Data Spaces 6-27

.
* EQUATE DATA SPACE STORAGE TO OBJAREA
.
L 4,DSORG
LAM 4,4,DSALET
USING OBJAREA,4
.

* MAP THE OBJECT
.
DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
DIV ACCESS,ID=OBJID,MODE=UPDATE
DIV MAP,ID=OBJID,AREA=DSORG,STOKEN=DSSTOK
.

* USE THE ALET IN DSALET TO REFERENCE THE
* DATA SPACE STORAGE MAPPING THE OBJECT.
.
MVC OBJWORD1,DATAIN
MVC OBJWORD2,DATA2
.

* SAVE ANY CHANGES TO THE OBJECT WITH DIV SAVE
.
DIV SAVE,ID=OBJID
DIV UNMAP,ID=OBJID,AREA=DSORG
DIV UNACCESS,ID=OBJID
DIV UNIDENTIFY,ID=OBJID

* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
.
ALESERV DELETE,ALET=DSALET
DSPSERV DELETE,STOKEN=DSSTOK
.

DSNAME DC CL8’MYSPACE ’ DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F DATA SPACE ORIGIN
DSSIZE DC F’2560’ DATA SPACE 10 MEGABYTES IN SIZE
OBJID DS CL8 DIV OBJECT ID
OBJDD DC AL1(7),CL7’MYDD ’ DIV OBJECT DDNAME
DATAIN DC CL4’JOBS’
DATA2 DC CL4’PAYR’
OBJAREA DSECT WINDOW IN DATA SPACE
OBJWORD1 DS F
OBJWORD2 DS F

See the chapter on data-in-virtual in z/OS MVS Programming: Assembler Services
Guide for more help in using data spaces with data-in-virtual.

Paging Data Space Storage Areas into and out of Central Storage
If you expect to be processing through one or more 4K blocks of data space
storage, you can use DSPSERV LOAD to load these pages into central storage. By
loading an area of a data space into central storage, you reduce the number of
page faults that occur while you sequentially process through that area. DSPSERV
LOAD requires that you specify the STOKEN of the data space (on the STOKEN
parameter), the beginning address of the area (on the START parameter), and the
size of the area (on the BLOCKS parameter). The beginning address does not have
to be on a 4K-byte boundary, nor does the size have to be an increment of 4K
blocks. (Note that DSPSERV LOAD performs the same action for a data space as
the PGSER macro with the LOAD parameter does for an address space.)

Issuing DSPSERV LOAD does not guarantee that the pages will be in central
storage; the system honors your request according to the availability of central
storage. Also, after the pages are loaded, page faults might occur elsewhere in the
system and cause the system to move those pages out of central storage.

6-28 z/OS V1R3.0 MVS Extended Addressability Guide

If you finish processing through one or more 4K block of data space storage, you
can use DSPSERV OUT to page the area out of central storage. The system will
make these real storage frames available for reuse. DSPSERV OUT requires that
you specify the STOKEN, the beginning address of the area, and the size of the
area. (Note that DSPSERV OUT corresponds to the PGSER macro with the OUT
parameter.)

When your program has no further need for the data in a certain area of a data
space, it can use DSPSERV RELEASE to free that storage.

Releasing Data Space Storage
Your program can release storage when it used a data space for one purpose and
wants to reuse it for another purpose, or when your program is finished using the
area. To release (that is, initialize to hexadecimal zeroes and return the resources
to the system) the virtual storage of a data space, use the DSPSERV RELEASE
macro. Specify the STOKEN to identify the data space and the START and
BLOCKS parameters to identify the beginning and the length of the area you need
to release.

To release storage in a data space, the caller must have a PSW key that is either
zero or equal to the key of the data space storage the system is to release. If the
caller is in supervisor state with PSW key 0 - 7 and is releasing a SCOPE=SINGLE
data space, the caller’s home or primary address space must be the same as the
owner’s home address space. If the caller is in problem state with PSW key 8 - F
and is releasing a SCOPE=SINGLE data space, the caller must own or have
created the data space. Otherwise, the system abnormally ends the caller.

Use DSPSERV RELEASE instead of the MVCL instruction to clear 4K byte blocks
of storage to zeroes because:

v DSPSERV RELEASE is faster than MVCL for very large areas.

v Pages released through DSPSERV RELEASE do not occupy space in processor
or auxiliary storage.

If your program is running disabled for I/O or external interrupts, use the
DISABLED=YES parameter on DSPSERV RELEASE. If your program is running
disabled and issues DSPSERV RELEASE without DISABLED=YES, the system
abends the program.

How SRBs Use Data Spaces
An SRB cannot own a data space. Through the DSPSERV CREATE macro, a
supervisor state or PSW key 0-7 program running under an SRB must assign
ownership of a data space to a TCB. The owning TCB must reside in the SRB’s
home or primary address space.

Like a TCB, an SRB routine has a DU-AL and can use the PASN-AL of its address
space. The DU-AL that the system gives the SRB routine can be either empty or a
copy of the scheduling program’s DU-AL. When you issue the SCHEDULE macro
to schedule an SRB, you can obtain:

v An empty DU-AL for the SRB routine by specifying MODE=NONXM. With a
mode of NONXM, the SRB routine runs with its primary, secondary, and home
address spaces equal to SRBASCB.

v A copy of the scheduling routine’s DU-AL by specifying MODE=FULLXM. If the
scheduling program creates entries in the DU-AL after scheduling the SRB, the

Chapter 6. Creating and Using Data Spaces 6-29

SRB routine will not have access to those data spaces. With a mode of FULLXM,
the SRB runs with the same primary, secondary, and home addressability as the
scheduling program.

Figure 6-9 and Figure 6-10 illustrate the attributes of an SRB that is scheduled with
MODE=FULLXM and MODE=NONXM. Table 6-3 identifies the home, primary, and
secondary addressability for each type of invocation of the SCHEDULE macro.

TCB A

DATA
SPACE

DS5

COMMON AREA

PC

PC ROUTINE

DSPSERV CREATE
ALESERV ADD

ALETDS5 DS F

AS3

SRB
ROUTINE

SRB

DS5

GETMAIN
SCHEDULE ...MODE=NONXM

AS1 AS2

Figure 6-9. Scheduling an SRB with an Empty DU-AL and in a Non-Cross Memory Environment

6-30 z/OS V1R3.0 MVS Extended Addressability Guide

Table 6-3. Addressability for Each Type of Invocation of the SCHEDULE Macro

NONXM FULLXM

TCB SRB TCB SRB

HOME AS1 AS3 AS1 AS1

Primary AS1 AS3 AS1 AS1

Secondary AS2 AS3 AS2 AS2

When you use the DSPSERV CREATE macro to create the data space and assign
ownership, you must identify the TCB through the TTOKEN parameter. A TTOKEN
identifies a TCB. Unlike TCB addresses, TTOKENs are unique within the IPL; the
system does not assign this same identifier to any other TCB until the next IPL. If
you know the TCB address of the task that is to receive ownership, but not the
TTOKEN, use the TCBTOKEN macro. The TCBTOKEN macro accepts the TCB
address and returns a TTOKEN. You then use this TTOKEN in the DSPSERV
CREATE macro.

TCB A

PC

AS1 AS2

DATA

SPACE

DS5

ALETDSS DS F

DS5

DU-AL
PC ROUTINE

COMMON AREA

GETMAIN

SCHEDULE ...MODE=FULLXM

ALETDS5 DS F

SRB

ROUTINE

SRB

DSPSERV CREATE

ALESERV ADD

DS5

DU-AL

Figure 6-10. Scheduling an SRB with a Copy of the Scheduling Program’s DU-AL and in the Same Cross Memory
Environment

Chapter 6. Creating and Using Data Spaces 6-31

For more information about TTOKENs, see “Obtaining the TCB Identifier for a Task
(TTOKEN)”.

When an SRB routine terminates, it can delete any data spaces it created. Use the
STOKEN parameter on the DSPSERV DELETE macro to specify the data space.

Obtaining the TCB Identifier for a Task (TTOKEN)
Each task in the system is identified in two ways:

v By the TCB address.

v By the TTOKEN of the task. A TTOKEN is an identifier that the system assigns to
a TCB. Unlike a TCB address, a TTOKEN is unique within the IPL; the system
does not assign the same identifier to any other TCB until the next IPL.

Some MVS macros require that you identify the task using the TCB address, some
require the TTOKEN, and some allow you to use either the TCB address or the
TTOKEN. If you know a task’s TCB address and need the TTOKEN value or if you
need the TTOKEN for the current task, the task that attached the current task, or
the job step task, you can use the TCBTOKEN macro to obtain the value. You can
also use the TCBTOKEN macro if you know the TTOKEN for a task and want the
TCB address. Use the TYPE parameter on the TCBTOKEN macro to specify the
value you are looking for:

TOTTOKEN The system returns the TTOKEN of the task whose
TCB address you specify.

CURRENT The system returns the TTOKEN of the currently
active task.

PARENT The system returns the TTOKEN of the task that
attached the currently active task.

JOBSTEP The system returns the TTOKEN of the job step
task for the primary address space.

TOTCB The system returns the TCB address for the task
whose TTOKEN you specify.

Example of an SRB Routine Using a Data Space
In the following example, an SRB routine creates a data space, assigning
ownership to the scheduling TCB (that is, the TCB that represents the program that
schedules the SRB). The example includes the deletion of the data space. To
assign the ownership, the routine must know the TTOKEN of the TCB. For this
example, assume that the scheduling program has passed the address of the
scheduling TCB through the user field in the SRB, SRBPARM. (The system loads
the address of this field into GPR 1 when the system dispatches the SRB.) Before it
creates the data space, the routine uses the scheduling TCB address as input to
the TCBTOKEN macro to obtain the TTOKEN of the TCB.
* EXAMPLE ASSUMES CALLER RUNNING WITH PASN=HASN AND THE
* DATA SPACE WILL BE OWNED BY THE TCB THAT SCHEDULED THE SRB

.
BAKR 14,0 SAVE CALLER’S STATUS ON STACK
LAE 10,0 SET BASE REGISTER AR
BASR 10,0 SET BASE REGISTER GR
USING *,10
SAC 0 ENSURE IN PRIMARY MODE
SYSSTATE ASCENV=P SET THE GLOBAL BIT
.

* GET HOME ADDRESS SPACE LOCAL LOCK FOR THE TCBTOKEN SERVICE
.

6-32 z/OS V1R3.0 MVS Extended Addressability Guide

SETLOCK OBTAIN,TYPE=LOCAL,MODE=UNCOND,REGS=USE
.
USING PSA,0
L 2,PSAAOLD GET HOME ASCB ADDRESS
.

* GET ADDRESS OF SCHEDULING TCB (CONTENTS OF SRBPARM) FROM REGISTER 1
.
LR 3,1 GET ADDRESS OF SCHEDULING TCB
.
TCBTOKEN TYPE=TOTTOKEN,TTOKEN=TCBTTOKN,ASCB=(2),TCB=(3)
.

* RELEASE LOCAL LOCK
SETLOCK RELEASE,TYPE=LOCAL,REGS=USE
.
DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN,BLOCKS=DSPBLCKS, X

ORIGIN=DSPCORG,SCOPE=ALL,TTOKEN=TCBTTOKN
.
ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
.

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
.
SAC 512 SWITCH INTO AR ADDRESSING MODE
SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
.

* USE DATA SPACE
.

* DELETE DATA SPACE
.
ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
.
PR RETURN TO CALLER
.

DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
TCBTTOKN DS CL16 16 BYTE FIELD FOR TCBTOKEN

In the following example, a TCB routine creates a data space and then schedules
an SRB which can immediately address the data space.
* THE SCHEDULING ROUTINE

.
DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN,BLOCKS=DSPBLCKS, X

ORIGIN=DSPCORG,SCOPE=ALL,TTOKEN=TCBTTOKN
.
ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
.

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
.
SAC 512 SWITCH INTO AR ADDRESSING MODE
SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
.

* INITIALIZE DATA SPACE
.

* USE DATA SPACE
.

* GET INTO PRIMARY ADDRESSING MODE TO ISSUE GETMAIN AND SCHEDULE
.
SAC 0 SWITCH INTO PRIMARY ADDRESSING

* MODE
SYSSTATE ASCENV=PRIMARY SET GLOBAL BIT FOR PRIMARY MODE
.

Chapter 6. Creating and Using Data Spaces 6-33

* OBTAIN AND INITIALIZE AN SRB AND AN SRB PARAMETER AREA
.
GETMAIN RU,SP=213,LV=PSRBSIZE GET THE STORAGE
.
USING SRB,1
XC SRB,SRB CLEAR THE SRB
MVC SRBPTCB,PSATOLD SET PURGE TCB ADDRESS TO CURRENT

* TCB ADDRESS
L 8,PSAAOLD LOCATE CURRENT ASCB
USING ASCB,8
MVC SRBPASID,ASCBASID SET PURGE ASID TO CURRENT ASID
MVC SRBRMTR,RMTRADDR SET RMTR ADDRESS
OI SRBRMTR,X’80000000’ SET ADDRESS TO 31-BIT MODE
LA 7,ENTSRB GET ENTRY POINT ADDRESS
ST 7,SRBEP SET ENTRY POINT ADDRESS
OI SRBEP,X’80000000’ SET ADDRESS TO 31-BIT MODE
LA 2,SRBEND PARAMETERS FOLLOW SRB
ST 2,SRBPARM SET PARAMETER ADDRESS
USING PARMS,2
MVC DALET,DSPCALET SAVE DATASPACE ALET IN PARAMETERS
XC ECB1,ECB1 CLEAR THE ECB
DROP 2
.

* SCHEDULE SRB WHICH USES THE DATASPACE
.
SCHEDULE SRB=(1),MODE=FULLXM
.

* FREE ONLY THE SRB STORAGE
.
FREEMAIN RU,LV=SRBSIZE,SP=213
.

* WAIT FOR SRB TO COMPLETE
.
WAIT ECB=ECB1
.

* FREE THE PARAMETER STORAGE
.
FREEMAIN RU,LV=8,SP=213
.

* DELETE DATA SPACE
.
ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
.
.

DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
PSRBSIZE DC A(SRBSIZE+8) SIZE OF AN SRB PLUS AN 8 BYTE
* PARAMETER AREA
RMTRADDR DC A(RMTRXX)
*
PARMS DSECT SRB PARAMETER AREA
DALET DS F DATASPACE ALET FOR SRB
ECB1 DS F ECB FOR SRB TO POST

.
* THE SRB ROUTINE

.
SRBENT DS 0H
.
LR 4,14 SAVE RETURN ADDRESS
.

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE

6-34 z/OS V1R3.0 MVS Extended Addressability Guide

.
USING PARMS,1
LAM 5,5,DALET USE REGISTER 5 TO ADDRESS DATA
SPACE
.
SAC 512 SWITCH INTO AR ADDRESSING MODE
SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
.

* USE DATA SPACE
.

* POST THE WAITING TASK
.
SAC 0 SWITCH INTO PRIMARY ADDRESSING

* MODE
SYSSTATE ASCENV=PRIMARY SET GLOBAL BIT FOR PRIMARY MODE

.
POST ECB1,LINKAGE=SYSTEM
.

* EXIT
.
BR 4

Dumping Storage in a Data Space
Use the following macros to dump data space storage.

v Use the DSPSTOR parameter on the SNAPX macro to dump storage from any
data space that the caller has addressability to, providing the program also has a
TCB key (for SCOPE=SINGLE and SCOPE=ALL data spaces) or a PSW key (for
a SCOPE=COMMON data space) that matches the storage key of the data
space.

v Use the DUMPOPX parameters on the ABEND macro and the SETRP macro
with the list form of the SNAPX macro to dump data space storage.

v Use the LISTD and SUMLSTL parameters on the SDUMPX macro to dump
certain ranges of data space storage:

– LISTD identifies (by STOKEN) the data space that contains storage to be
added to the main part of the dump.

– SUMLSTL identifies (by ALET) the data space that contains the storage to be
added to the summary part of the dump.

For the syntax of SNAPX, see z/OS MVS Programming: Assembler Services
Reference IAR-XCT. For the syntax of SDUMPX, see z/OS MVS Programming:
Authorized Assembler Services Reference LLA-SDU.

Using Data Spaces Efficiently
Although a TCB can own many data spaces, it is important that it reference these
data spaces carefully. It is more efficient for the system to reference the same data
space ten times, than it is to reference each of ten data spaces one time. For
example, an application might have a master application region that has many
users, each one having a data space. System performance is best if each program
completes its work with one data space before it starts work with another data
space.

MVS limits the number of access list entries and the number of data spaces
available to each TCB. Therefore, IBM recommends that, given a choice, you use
one large data space rather than a number of small data spaces that add up to the
size of the one large data space.

Chapter 6. Creating and Using Data Spaces 6-35

6-36 z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 7. Creating and Using Hiperspaces

A hiperspace is a range of up to two gigabytes of contiguous virtual storage
addresses that a program can use as a buffer. Like a data space, a hiperspace
holds only data, not common areas or system data; code does not execute in a
hiperspace. Unlike a data space, data is not directly addressable.

The DSPSERV macro manages hiperspaces. The TYPE=HIPERSPACE parameter
tells the system that it is to manage a hiperspace rather than a data space. Use
DSPSERV to:
v Create a hiperspace
v Release an area in a hiperspace
v Delete a hiperspace
v Expand the amount of storage in a hiperspace currently available to a program.

To manipulate data in a hiperspace, your program brings the data, in blocks of 4K
bytes, into a buffer area in its address space. The program can use the data only
while it is in the address space. You can think of this buffer area as a “view” into the
hiperspace. The HSPSERV macro write service performs the transfer of the data to
the hiperspace. The HSPSERV read service transfers the hiperspace data back to
the address space buffer area.

The data in the hiperspace and the buffer area in the address space must both start
on a 4K byte boundary.

A program would use a hiperspace rather than a data space if the program needs
an area outside the address space primarily for storage purposes, and not for data
manipulation. If you are uncertain whether a hiperspace or a data space is the best
choice for your program, see “Basic Decision: Data Space or Hiperspace” on
page 1-6.

Use this chapter to help you create, use, and delete hiperspaces. It describes some
of the characteristics of hiperspaces, how to move data in and out of a hiperspace,
and how data-in-virtual can help you control data in hiperspaces. In addition, the
following books contain the syntax and parameter descriptions for the macros that
are mentioned in this chapter:

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

HiperspaceAddress Space

HSPSERV . . .

buffer area
write operation

read operation

data area

HSPSERV. . .

© Copyright IBM Corp. 1988, 2002 7-1

v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Managing Hiperspace Storage
Managing storage in hiperspaces differs from managing storage in address spaces.
Keep the following advisory notes in mind:

v When you create a hiperspace, request a maximum size large enough to handle
your application’s needs and, optionally, an initial size large enough to meet its
immediate needs.

v You are responsible for keeping track of hiperspace storage. You cannot use the
system services, such as the STORAGE, GETMAIN, FREEMAIN, or CPOOL
macros, or the callable cell pool services to manage this area.

v If you are not going to use an area of a hiperspace again, release that area to
free the resources that back the area.

v When you are finished using a hiperspace, delete it.

Limiting Hiperspace Use
The use of hiperspaces consumes system resources such as expanded and
auxiliary storage. Programmers responsible for tuning and maintaining MVS can
control the use of these resources. Through the system management facility (SMF)
installation exit IEFUSI, an installation can set limits on the amount of virtual
storage that programs in each address space can use for data spaces and
hiperspaces.

See z/OS MVS Installation Exits for information on using IEFUSI.

Managing Hiperspace Storage Across a Checkpoint/Restart Operation
A program can use checkpoint/restart while it has one or more entries for a
hiperspace on its access list (DU-AL or PASN-AL). If the program has specified on
the ALESERV macro that the system is to ignore entries made to the access list for
the hiperspace for checkpoint/restart processing (CHKPT=IGNORE), the CHKPT
macro processes successfully.

A program that specifies CHKPT=IGNORE assumes full responsibility for managing
the hiperspace storage. Managing the hiperspace storage includes the following:

v If any program depends on the contents of the hiperspace and the data cannot
be recreated or obtained elsewhere, the responsible program must save the
contents of the hiperspace prior to the checkpoint operation.

v Once the checkpoint operation has completed, the responsible program must
perform the following during restart processing to successfully manage the
hiperspace storage.

1. Ensure that the hiperspace exists. The original hiperspace might or might not
exist. If the original hiperspace does not exist, the responsible program must
perform a DSPSERV CREATE TYPE=HIPERSPACE to recreate the
hiperspace.

2. Perform an ALESERV ADD of the hiperspace, original or recreated, to the
program’s access list to obtain a new ALET.

3. If, in addition to having a dependency on the hiperspace, any program also
depends on the contents of the hiperspace storage, the responsible program

7-2 z/OS V1R3.0 MVS Extended Addressability Guide

must refresh the contents of the hiperspace storage. The program must use
the new ALET to reference the hiperspace.

4. The responsible program must make the new ALET available to any program
that has a dependency on the hiperspace. The STOKEN, changed or
unchanged, must be made available to any program that needs to perform an
ALESERV ADD to access the hiperspace.

See z/OS DFSMS Checkpoint/Restart for more information about the CHKPT
macro.

Relationship Between the Hiperspace and Its Owner
Your program creates a hiperspace, but it cannot own the hiperspace. If the unit of
work that represents the program is a TCB, that TCB is the owner of the
hiperspace unless the program assigns ownership to another TCB. If the unit of
work is an SRB, the program must assign ownership to a TCB. Because of this
transfer of ownership, the owner of the hiperspace and the creator of the
hiperspace are not always the same TCB.

The virtual area of a hiperspace is available to programs that run under the TCB
that owns the hiperspace and is available, in some cases, to other programs. When
a TCB terminates, the system deletes any hiperspaces the TCB owns. The system
swaps a hiperspace in and out as it swaps in and out the address space that
dispatched the owning TCB. Thus, hiperspaces that are shared by programs that
run in other address spaces must be owned by TCBs in non-swappable address
spaces.

A hiperspace can remain active even after the creating TCB terminates. When a
program creates a hiperspace, it can assign ownership of the hiperspace to a TCB
that will outlive the creating TCB. In this case, the termination of the creating TCB
does not affect the hiperspace.

Because hiperspaces belong to TCBs, keep in mind the relationship between the
program and the TCB under which the program runs. For simplicity, however, this
chapter describes hiperspaces as if they belong to programs. For example, “a
program’s hiperspace” means “the hiperspace that belongs to the TCB that
represents the program.”

Serializing Use of Hiperspace Storage
At many installations, users must share access to data in a hiperspace. Users who
are updating data for common use by other programs need exclusive access to that
data for the period of time between the transfer of data from the hiperspace to the
return of data to the hiperspace. If several users tried to update the same data at
the same time, the result would be incorrect or damaged data. To protect the data
integrity, you might need to serialize access to the data in the hiperspace.

Serializing the use of the storage in a hiperspace requires similar methods to those
you would use to serialize the use of virtual storage in an address space. Use the
ENQ and DEQ macros or establish your own protocol for serializing the use of the
hiperspace.

Chapter 7. Creating and Using Hiperspaces 7-3

Standard and Expanded Storage Only Hiperspaces
You have a choice of creating a standard hiperspace or an ESO hiperspace. The
standard hiperspace is backed with expanded storage and auxiliary storage, if
necessary. Through the buffer area in the address space, your program can view or
“scroll” through the hiperspace.

v HSTYPE=SCROLL on DSPSERV creates a standard hiperspace.

v HSPSERV SWRITE and HSPSERV SREAD transfer data to and from a standard
hiperspace.

The ESO hiperspace is backed with expanded storage only. It is a high-speed
buffer area, or “cache” for data that your program needs.

v HSTYPE=CACHE on DSPSERV creates an ESO hiperspace.

v HSPSERV CWRITE and HSPSERV CREAD transfer data to and from an ESO
hiperspace.

Standard Hiperspaces
Standard hiperspaces are available to all programs. The data in a standard
hiperspace is predictable; that is, your program can write data out to a standard
hiperspace and count on retrieving it.

The best way to describe how your program can scroll through a standard
hiperspace is through an example. Figure 7-1 shows a hiperspace that has four
scroll areas, A, B, C, and D. After the program issues an HSPSERV SREAD for
hiperspace area A, it can make changes to the data in the buffer area in its address
space. HSPSERV SWRITE then saves those changes. In a similar manner, the
program can read, make changes, and save the data in areas B, C, and D. When
the program reads area A again, it finds the same data that it wrote to the area in
the previous HSPSERV SWRITE to that area.

A standard hiperspace gives your program an area where it can:

v Store data, either generated by your program or moved (through address space
buffers) from DASD

v Scroll through large amounts of data.

After you finish using the hiperspace, you can:

HiperspaceAddress Space

HSPSERV SWRITE . . .

HSPSERV SWRITE . . .

buffer area

HSPSERV SREAD . . .

HSPSERV SREAD . . .

area A

area B

area C

area D

Figure 7-1. Example of Scrolling through a Standard Hiperspace

7-4 z/OS V1R3.0 MVS Extended Addressability Guide

v Move the changed data (through address space buffers) to DASD, making the
hiperspace data permanent

v Delete the hiperspace data with the deletion of the hiperspace or the termination
of the owner of the hiperspace, treating the hiperspace data as temporary.

Standard hiperspaces can be non-shared and shared , depending on how you
code the SHARE parameter on DSPSERV.

v Generally, a program can access a non-shared standard hiperspace only if it is
dispatched in the owner’s home address space. However, a program not
dispatched in the owner’s home address space and using an access list entry
token (ALET) can access a non-shared standard hiperspace through the owner’s
home primary address space access list (PASN-AL).

v A program can share a shared standard hiperspace with programs that are
dispatched in any address space.

You can extend the use of hiperspaces by supplying an ALET on the HSPSERV
macro. To learn the differences between non-shared and shared standard
hiperspaces and how you can extend their use, see “Accessing Hiperspaces” on
page 7-12.

If your application wants to save a permanent copy of the data from a standard
hiperspace, consider using the services of data-in-virtual. See “Using Data-in-Virtual
with Standard Hiperspaces” on page 7-39.

Expanded Storage Only Hiperspaces
An ESO hiperspace is available to supervisor state programs or problem state
programs with PSW keys 0 through 7. To use the hiperspace, a program must have
the STOKEN for the hiperspace. An ESO hiperspace is backed by expanded
storage only. To back this storage, the system does not use auxiliary storage slots;
data movement does not include paging I/O operations. However, in a peak-use
situation:

v The system might not be able to back the data you are writing to the hiperspace.

v The system might take away the expanded storage that backs the hiperspace.

These actions cause the data in an ESO hiperspace to be volatile. Therefore, use
an ESO hiperspace only if you are prepared to handle unsuccessful read
operations. You can use this hiperspace to get quick access to the data there. But,
in a peak-use condition, when the system takes the expanded storage away from
the hiperspace, the program must be prepared to read data from a permanent
backup copy on DASD or recreate the data that was in the hiperspace.

When the system swaps the address space out, it discards the data in any
hiperspace that is owned by TCBs that are running in the address space. For this
reason, you might consider making such an address space non-swappable.

Summary of the Differences
Table 7-1 on page 7-6 shows some important differences between standard (both
non-shared and shared) hiperspaces and ESO hiperspaces:

Chapter 7. Creating and Using Hiperspaces 7-5

Table 7-1. Comparison of Standard and ESO Hiperspaces

Standard Hiperspace ESO Hiperspace

What authorization do you need to
create the hiperspace?

Any, for non-shared;
supervisor state or PSW
key 0-7 for shared.

Supervisor state or PSW
key 0-7

What authorization do you need to
use the hiperspace?

Any, for non-shared;
depends on use of an
ALET for shared.

Supervisor state or PSW
key 0-7

How do you write data to the
hiperspace?

By using HSPSERV
SWRITE

By using HSPSERV
CWRITE

How do you read data from the
hiperspace?

By using HSPSERV
SREAD

By using HSPSERV
CREAD

Does the system save the data in
the address space buffer after a
write operation?

No Yes, unless you use
KEEP=NO on HSPSERV

Does the system save the data in
the hiperspace after a read
operation?

Yes, unless you use
RELEASE=YES on
HSPSERV

Yes (although hiperspace
data is always volatile)

What happens to the data in the
hiperspace when the system swaps
the owning address space out?

The system preserves
the data.

The system discards the
data.

Rules for Creating, Deleting, and Using Hiperspaces
To protect data spaces from unauthorized use, the system uses certain rules to
determine whether a program can create, delete, or extend a hiperspace or whether
it can access data in a hiperspace. The rules for problem state programs with PSW
key 8 through F differ from the rules for programs that are supervisor state or PSW
key 0 through 7. Table 7-2 summarizes these rules:

Table 7-2. Creating, Deleting, and Using Hiperspaces

Function Type of hiperspace A problem state, ke y 8 - F
program:

A supervisor state or key 0-7
program:

CREATE Non-shared
standard

Can create a non-shared standard
hiperspace.

Can create the hiperspace if its
primary or home address space is the
same as the intended owner’s home
address space.

Shared standard
and ESO

Cannot create shared or ESO
hiperspaces.

Can create the hiperspace if its
primary or home address space is the
same as the intended owner’s home
address space.

DELETE Non-shared
standard

Can delete the non-shared
standard hiperspaces it owns if its
PSW key matches the storage key
of the hiperspace.

Can delete a non-shared standard
hiperspace if its primary or home
address space is the same as the
owner’s home address space.

Shared standard
and ESO

Cannot delete a shared standard or
ESO hiperspace.

Can delete the hiperspace if its
primary or home address space is the
same as the owner’s home address
space.

7-6 z/OS V1R3.0 MVS Extended Addressability Guide

Table 7-2. Creating, Deleting, and Using Hiperspaces (continued)

Function Type of hiperspace A problem state, ke y 8 - F
program:

A supervisor state or key 0-7
program:

RELEASE Non-shared
standard

Can release storage in its
non-shared standard hiperspaces if
its PSW key matches the storage
key of the hiperspace.

Can release storage in a non-shared
standard hiperspace if its primary or
home address space is the same as
the owner’s home address space and
its PSW key matches the storage key
of the hiperspace.

Shared standard
and ESO

Cannot release storage in a shared
standard or ESO hiperspace.

Can release storage in the hiperspace
if its PSW key matches the storage
key of the hiperspace.

EXTEND Non-shared
standard shared
standard and ESO

Can extend the current size only if
it owns the hiperspace.

Can extend the current size.

Creating a Hiperspace
To create a hiperspace, issue the DSPSERV CREATE macro with the
TYPE=HIPERSPACE parameter. MVS gives you contiguous 31-bit virtual storage of
the size you specify and initializes the storage to hexadecimal zeroes. The entire
hiperspace has the storage key that you request, or, by default, the key that
matches your own PSW key. Use the HSTYPE parameter to specify whether the
hiperspace is to be standard or ESO. If standard, you can use the SHARE
parameter to request either a non-shared standard (SHARE=NO, the default) or a
shared standard (SHARE=YES) hiperspace. If you omit both HSTYPE and SHARE,
you create a non-shared standard hiperspace.

On the DSPSERV macro, you are required to specify:

v The name of the hiperspace (NAME parameter). To ask DSPSERV to generate a
hiperspace name unique to the address space, use the GENNAME parameter.
DSPSERV will return the name it generates at the location you specify on the
OUTNAME parameter. See “Choosing the Name of the Hiperspace” on page 7-8.

v A location where DSPSERV is to return the STOKEN of the hiperspace
(STOKEN parameter). DSPSERV CREATE returns a STOKEN that you can use
to identify the hiperspace to other DSPSERV services and to the HSPSERV and
DIV macros.

Other information you might specify on the DSPSERV macro is:

v The maximum size of the hiperspace and its initial size (BLOCKS parameter). If
you do not code BLOCKS, the hiperspace size is determined by defaults set by
your installation. In this case, use the NUMBLKS parameter to tell the system
where to return the size of the hiperspace. See “Specifying the Size of the
Hiperspace” on page 7-9.

v A location where DSPSERV can return the address (either 0 or 4096) of the first
available block of the hiperspace (ORIGIN parameter). See “Identifying the Origin
of the Hiperspace” on page 7-11.

v A request that the hiperspace not be fetch-protected (FPROT parameter). See
“Protecting Hiperspace Storage” on page 7-10.

v A request that the hiperspace be shared standard (SHARE parameter). See
“Creating a Non-Shared or Shared Standard Hiperspace” on page 7-11.

Chapter 7. Creating and Using Hiperspaces 7-7

v The storage key of the hiperspace (KEY parameter). Use CALLERKEY to specify
that the storage key of the hiperspace is to match your PSW key (or take the
default for the KEY parameter). See “Protecting Hiperspace Storage” on
page 7-10.

v The TTOKEN of the TCB to which you assign ownership of the hiperspace
(TTOKEN parameter). See “How SRBs Use Hiperspaces” on page 7-44.

v A request that the system persist in trying to keep the data in an ESO hiperspace
(CASTOUT=NO). See “Creating an Expanded Storage Only Hiperspace” on
page 7-12.

Choosing the Name of the Hiperspace
The names of hiperspaces and data spaces must be unique within an address
space. You can choose the name yourself or you can ask the system to generate a
unique name for the hiperspace. To keep you from choosing names that it uses,
MVS has some specific rules for you to follow. These rules are listed in the
DSPSERV description under the NAME parameter in z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN.

Use the GENNAME parameter on DSPSERV to ask the system to generate a
unique name for your hiperspace. GENNAME=YES generates a unique name that
has as its last one to three characters the first one to three characters of the name
you specify on the NAME parameter.

Example 1

If PAY����� is the name you supply on the NAME parameter and you code
GENNAME=YES, the system generates the following name:
nccccPAY

where the system generates the digit n and the characters cccc, and appends the
characters PAY that you supplied.

Example 2

If J������� is the name you supply on the NAME parameter and you code
GENNAME=YES, the system generates the following name:
nccccJ

GENNAME=COND checks the name you supply on the NAME parameter. If it is
already used for a data space or a hiperspace, DSPSERV supplies a name with the
format described for the GENNAME=YES parameter. To learn the unique name that
the system generates for the hiperspace you are creating, use the OUTNAME
parameter.

Note that the system has a supply of 99,999 names it can generate for data spaces
and hiperspaces for a single address space. If the system tries to generate a name
and finds that it has used up the supply of names, it rejects the program with a
return code of “08” and a reason code of “0012”. The system restores the supply of
names whenever the number of such data spaces and hiperspaces owned by the
address space goes to zero. Therefore, if your program is a batch job and it is
creating a hiperspace, do not:

v Request that the system generate a name (through the GENNAME parameter)
and

7-8 z/OS V1R3.0 MVS Extended Addressability Guide

v Assign ownership to an initiator task or a task higher than the initiator task in the
TCB chain

Specifying the Size of the Hiperspace
When you create a hiperspace, you tell the system on the BLOCKS parameter how
large to make that space, the largest size being 524,288 blocks. (The product of
524288 times 4K bytes is 2 gigabytes.) If your processor does not support an origin
of zero, the limit is actually 4096 bytes less than 2 gigabytes.

Before you code BLOCKS, you should know two facts about the control an
installation has on the size of data spaces and hiperspaces.

v An installation can set limits on the amount of storage available for each address
space for all data spaces and hiperspaces with a storage key of 8 through F. If
your request for this kind of space would cause the installation limit to be
exceeded, the system rejects the request with a nonzero return code and a
reason code.

v An installation sets a default size for data spaces and hiperspaces; you should
know this size. If you do not use the BLOCKS parameter, the system creates a
hiperspace with the default size. (The IBM default size is 239 blocks.)

If you create the hiperspace with a storage key of 0 through 7, the system does not
check the size against the total storage already used for data spaces and
hiperspaces. If you create the hiperspace with a storage key of 8 through F, the
system adds the initial size of the space to the cumulative total of all data spaces
and hiperspaces for the address space and checks this total against the installation
limit for an address space.

For information on the IBM defaults and how to change them, see “Limiting
Hiperspace Use” on page 7-2.

The BLOCKS parameter allows you to specify a maximum size and initial size
value.

v The maximum size identifies the largest amount of storage you will need in the
hiperspace.

v An initial size identifies the amount of the storage you will immediately use.

As you need more space in the hiperspace, you can use the DSPSERV EXTEND
macro to increase the size of the available storage, thus increasing the storage in
the hiperspace that is available for the program. The amount of available storage is
called the current size . (At the creation of a hiperspace, the initial size is the same
as the current size.) When it calculates the cumulative total of data space and
hiperspace storage, the system uses the current size of the hiperspace.

If you know the default size and want a hiperspace smaller than or equal to that
size, use BLOCKS=maximum size or omit the BLOCKS parameter.

If you know what size hiperspace you need and are not concerned about exceeding
the installation limit, set the maximum size and the initial size the same.
BLOCKS=0, the default, establishes a hiperspace with the maximum size and the
initial size both set to the default size.

If you do not know how large a hiperspace (with storage key 8 - F) you will
eventually need or you are concerned with exceeding the installation limit, set the

Chapter 7. Creating and Using Hiperspaces 7-9

maximum size to the largest size you might possibly use and the initial size to a
smaller amount, the amount you currently need.

Use the NUMBLKS parameter to request that the system return the size of the
hiperspace it creates for you. You would use NUMBLKS, for example, if you did not
specify BLOCKS and do not know the default size.

Figure 7-2 shows an example of using the BLOCKS parameter to request a
hiperspace with a maximum size of 100,000 bytes of space and a current size of
20,000 bytes.

DSPSERV CREATE,. . .,BLOCKS=(HSMAX,HSINIT)
.

HSMAX DC A((1000000+4095)/4096) HIPERSPACE MAXIMUM SIZE
HSINIT DC A((20000+4095)/4096) HIPERSPACE INITIAL SIZE

Figure 7-12 on page 7-38 shows how you can extend the available storage of the
hiperspace in Figure 7-2.

Protecting Hiperspace Storage
If a supervisor state or PSW key 0 - 7 program wants the user of the hiperspace to
have read-only access, it can use the FPROT and KEY parameters on DSPSERV.
KEY assigns the storage key for the hiperspace, and FPROT specifies whether the
storage in the hiperspace is to be fetch-protected. Storage protection and fetch
protection rules apply for the entire hiperspace. For example, a program cannot
reference storage in a fetch-protected hiperspace without holding the PSW key that
matches the storage key of the hiperspace or PSW key 0.

Figure 7-3 on page 7-11 shows an ESO hiperspace, HSX, with a storage key of 5,
owned by a subsystem. PGM1 with PSW key of 8 has access to the hiperspace;
however, its PSW key does not match the storage key of the hiperspace. Its ability
to access the hiperspace depends on how the creating program coded the FPROT
parameter on the DSPSERV macro.

v If the creating program specified no fetch-protection (FPROT=NO), PGM1 can
fetch from (using HSPSERV CREAD) but not store into the hiperspace (using
HSPSERV CWRITE).

v If the creating program specified fetch-protection (FPROT=YES), PGM1 can
neither fetch from nor store into the hiperspace.

Hiperspace

Current size
20,000 bytes

Not available for immediate
use by the program.

Available for immediate
use by the program.

Maximum size
100,000 bytes

Figure 7-2. Example of Specifying the Size of a Hiperspace

7-10 z/OS V1R3.0 MVS Extended Addressability Guide

In Figure 7-3, PGM1 has fetch and store capability to the hiperspace; the
subsystem provides a PC routine with a PSW key 5 in the common area. To access
the hiperspace, PGM1 can PC to the PC routine and have access to the hiperspace
through the HSPSERV read and write operations. In the same way, other programs
can PC to the PC routine and use the data in the hiperspace.

Identifying the Origin of the Hiperspace
Some processors do not allow the hiperspace to start at address zero; these
hiperspaces start at the address 4096. When you use DSPSERV CREATE, you can
count on the origin of the data space staying the same within the same IPL. To
learn the starting address, either (1) create a hiperspace of 1 block of storage more
than you need and then assume that the hiperspace starts at 4096 or (2) use the
ORIGIN parameter. If you use ORIGIN, the system returns the beginning address of
the hiperspace to the location you specify.

An example of the problem you want to avoid in addressing hiperspace storage is
described as follows:

Suppose a program creates a hiperspace of 1 megabyte and assumes the data
starts at zero when it really begins at 4096. Then, if the program used the
address zero in the hiperspace, the system abends the program.

Creating a Non-Shared or Shared Standard Hiperspace
The HSTYPE parameter tells the system which kind of hiperspace you want to
create. HSTYPE=SCROLL identifies the standard hiperspace, the kind of
hiperspace that your program can scroll through. HSTYPE=SCROLL is the default.

SHARE=YES specifies a shared standard hiperspace; SHARE=NO, the default,
specifies a non-shared standard hiperspace.

Example of Creating a Standard Hiperspace

The following example creates a non-shared standard hiperspace:
*

DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
BLOCKS=20,STOKEN=HSSTOKEN,ORIGIN=HSORG

*

HSX

ESO hiperspace

owned by

subsystem

(storage key 5)

(FPROT=YES)

Address Space

PGM1
(PSW key 3)

PC

STOKEN DC CL8

PC routine
(PSW key 5)

buffer area

HSPSERV CREAD ...

Figure 7-3. Protecting Storage in a Hiperspace

Chapter 7. Creating and Using Hiperspaces 7-11

HSNAME DC CL8’SCROLLHS’ * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN OF THE HIPERSPACE
HSORG DS F * HIPERSPACE ORIGIN

Creating an Expanded Storage Only Hiperspace
HSTYPE=CACHE tells the system that your program (in supervisor state or PSW
key 0 - 7) wants an ESO hiperspace, the kind of hiperspace that offers your
program a high-speed cache area.

The CASTOUT parameter on DSPSERV is available only for ESO hiperspaces.
This parameter gives the system some indication of the priority of the data in the
hiperspace. CASTOUT tells the system how hard it should try to keep the data in
the hiperspace. The system looks at this parameter when it makes the decision to
take the expanded storage backing from the hiperspace. If you use CASTOUT=NO,
the system persists in trying to keep the hiperspace data. It tells the system to give
the hiperspace higher priority when it searches for pages to remove from expanded
storage when a shortage arises.

Note that specifying CASTOUT=NO can place a heavy demand on expanded
storage and does not always protect the data. Use it only when you are willing to
sacrifice overall system performance to have better availability of the data. Certain
factors might cause the pages to be discarded regardless of CASTOUT=NO. For
example, if the system swaps out the address space that owns the hiperspace, it
discards pages without regard to CASTOUT. To prevent loss of data due to a
swapped-out address space, make the address space that owns the hiperspace
non-swappable.

Example of Creating an ESO Hiperspace

The following example creates an ESO hiperspace:
* CREATE AN ESO HIPERSPACE

.
DSPSERV1 DSPSERV CREATE,NAME=NAME,STOKEN=STOKEN,ORIGIN=ORIGIN X

BLOCKS=BLOCKS,TYPE=HIPERSPACE,HSTYPE=CACHE,CASTOUT=NO
.

* CONSTANTS AND VARIABLES
.

NAME DC CL8’HSDS01 ’ NAME OF THE HIPERSPACE
BLOCKS DC F’100’ SIZE OF THE HIPERSPACE IN BLOCKS
ORIGIN DS AL4 START ADDRESS OF THE HIPERSPACE
STOKEN DS CL8 STOKEN RETURNED FROM DSPSERV CREATE

Accessing Hiperspaces
The HSPSERV macro service controls the use of a hiperspace. HSPSERV requires
that the program that is accessing the hiperspace specify the STOKEN of the
hiperspace. The program could have received the STOKEN from DSPSERV or
received it from another program. HSPSERV considers the following factors before
it allows a program to access a hiperspace:

v The authority of the caller

v The type of hiperspace: non-shared standard, shared standard, or ESO

v Whether the caller is in cross memory mode

v Whether the caller gives an access list entry token (ALET) for the hiperspace to
HSPSERV

v On a write operation, whether the PSW key of the accessing program matches
the storage key of the hiperspace, or is zero.

7-12 z/OS V1R3.0 MVS Extended Addressability Guide

When you access hiperspaces, you are not required to use an ALET. However,
there are benefits to using ALETs with hiperspaces. By obtaining an ALET, a
program builds a connection between the program and a hiperspace. When the
program supplies the ALET on HSPSERV, the program can:

v Access some hiperspaces that it could not otherwise access. See “How Problem
State Programs with PSW Key 8 - F Use Hiperspaces” and “How Supervisor
State or PSW Key 0 - 7 Programs Use Hiperspaces” on page 7-16.

v Take advantage of faster or more efficient data transfer. See “Obtaining Improved
Data Transfer To and From a Hiperspace” on page 7-25.

A program has two ways to obtain an ALET :

v From another program, as a passed parameter

v From the ALESERV ADD macro, if the program has the STOKEN for the
hiperspace.

The decisions of whether to create a non-shared standard or shared standard
hiperspace and whether to obtain an ALET depend on how you plan to share the
data in the space. The sections that follow help you understand which hiperspaces
HSPSERV allows problem state and supervisor state programs to access, and also
the benefits of having an ALET. “Obtaining an ALET for a Hiperspace” on page 7-18
describes how to obtain an ALET.

How does an ALET connect a program to a hiperspace?

An ALET is an index to an access list. An access list is a table where each entry
represents an address space, data space, or hiperspace that programs can access.
Each program has two access lists: a primary address space access list (PASN-AL)
and a dispatchable unit access list (DU-AL).

Each address space has one PASN-AL. It is available to any program that has
that address space as its primary address space.

Each TCB and SRB has one DU-AL. It is available to any program that the TCB
or SRB represents.

To use one of these access lists, the program needs the ALET that indexes the
access list. It uses the ALET as input on the HSPALET parameter on HSPSERV. It
is important to note that a program cannot obtain an ALET for a hiperspace
unless the processor has the move-page facility installed.

Chapter 5, “Using Access Registers” describes ALETs for data spaces and address
spaces; for an illustration of a DU-AL and PASN-AL, see Figure 5-5 on page 5-10.
Chapter 8, “Creating Address Spaces” 6 limits its discussion to ALETs for
hiperspaces.

How Problem State Programs with PSW Ke y 8 - F Use Hiperspaces
A problem state program with PSW key 8 - F can use the non-shared hiperspace it
created. Figure 7-4 on page 7-14 illustrates this use.

Chapter 7. Creating and Using Hiperspaces 7-13

By obtaining an ALET, a problem state program with PSW key 8 - F can obtain the
benefit of the move-page facility and also share a hiperspace with a subtask. For
example, suppose a problem state program obtains an ALET, attaches a subtask
using the ALCOPY parameter on the ATTACH macro, and passes the ALET and
STOKEN to the subtask. These actions allow the task and its subtask to share the
same non-shared hiperspace. Two problem state programs can share a
SCOPE=SINGLE data space in the same way. Turn to “How Problem State
Programs with PSW Key 8 - F Use Hiperspaces” on page 7-13 for an such an
example.

Can an authorized program set up an environment in which an unauthorized
program can share hiperspaces? An authorized program (supervisor state with
PSW key 0 - 7) can set up addressability for an unauthorized program (problem
state with PSW key 8 - F) and increase the use of hiperspaces by those
unauthorized programs. This section contains two examples of this increased
capability.

v Example 1 shows an unauthorized program using a shared or non-shared
standard hiperspace through an entry on the PASN-AL. Figure 7-5 on page 7-15
illustrates the first example.

v Example 2 shows an unauthorized program using a hiperspace while the
program is in cross memory mode. Figure 7-6 on page 7-16 illustrates the second
example.

Example 1 shows how an entry on the PASN-AL allows all programs in the address
space, including unauthorized programs, to use either non-shared or shared
standard hiperspaces. An authorized program obtains the hiperspace, places an
entry on the PASN-AL, and obtains the ALET. The program then passes the ALET
and STOKEN to other programs in the address space. Even programs that
space-switch into the address space can use the hiperspace, providing they receive
the ALET and STOKEN. Figure 7-5 on page 7-15 illustrates this case.

HS1

Non-shared

standard

AS1

DSPSERV . . .

PGM 1
TCB1

HSPSERV without ALET

STOKHS1 DS CLB PGM1 can use HSPSERV
to transfer data into and
out of HS1. Only programs
represnted by TCB1 can
use HS1.

Figure 7-4. A Problem State Program Using a Non-shared Standard Hiperspace

7-14 z/OS V1R3.0 MVS Extended Addressability Guide

Example 2 shows how an authorized program can set up a cross memory
environment that allows an unauthorized program to space-switch and still have
access to a non-shared hiperspace. Having created the non-shared standard
hiperspace HS1, PGM1 can obtain an ALET on the DU-AL, space-switch, and use
the ALET and STOKEN to access HS1. Figure 7-6 on page 7-16 illustrates this use
of a non-shared hiperspace.

PGM 1

(authorized)

PGM 2

(unauthorized)

PGM 3

(unauthorized)

DSPSERV
ALESERV

. . .
. . .

HSPSERV with ALET

HSPSERV with ALET

ALI DC F
STI DC CLB

ALE1 DC F
SRO1 DC CLB

HSALET DC F
HSSTO DC CLB

PASN-AL

AS1

HS1

Non-shared

standard

or

shared

standard

Figure 7-5. Example 1: An Unauthorized Program Using a Standard Hiperspace

Chapter 7. Creating and Using Hiperspaces 7-15

Summary of Unauthorized Programs’ Use of Hiperspaces
Table 7-3 describes the rules for accessing hiperspaces for problem state programs
with PSW key 8 - F.

Table 7-3. What Hiperspaces can Problem State Programs with PSW 8 - F Access?

If the program does not have an ALET: If the program has an ALET:

It can access a non-shared standard
hiperspace that it owns. It cannot be in cross
memory mode.

It can access a non-shared standard
hiperspace. It can be in cross memory mode.

It cannot access a shared standard
hiperspace.

It can access a shared standard
hiperspace. It can be in cross memory mode.

It cannot access an ESO hiperspace.

How Supervisor State or PSW Ke y 0 - 7 Programs Use Hiperspaces
Supervisor state or programs with PSW key 0 - 7 can create and control all three
kinds of hiperspaces. Table 7-4 on page 7-17 identifies the three types of
hiperspaces that these programs can use and some restrictions on this use.

PCRTN

PGM 1

PC

ALESERV . . .

HSPSERV with ALET
To access HS1, PGM1
does not have to own
HS1.

HSTOK DS CL8
HSAL DS F

HSSTOK DC CL 8
HSALET DC F

AS2

AS1 HS1

Non-shared

standardDU-AL

Figure 7-6. Example 2: An Unauthorized Program Using a Standard Hiperspace

7-16 z/OS V1R3.0 MVS Extended Addressability Guide

Table 7-4. What Hiperspaces can Supervisor State or PSW Key 0 - 7 Programs Use?

If the program does not have an ALET: If the program has an ALET:

It can access a non-shared standard
hiperspace if the owner’s home address
space is the same as the program’s home
address space. The program must not be in
cross memory mode.

Access to a non-shared standard is the
same as if the program did not have an
ALET, except it can be in cross memory
mode.

It can use a shared standard or ESO
hiperspace. It can be in cross memory mode.

Access to a shared standard or ESO
hiperspace is the same as if the program did
not have an ALET.

The use of an ALET allows supervisor state or PSW key 0 - 7 programs to use
non-shared standard hiperspaces. The following section describes how this program
can:
v Use a non-shared standard hiperspace
v Use a shared standard and ESO hiperspace

The supervisor state program using a non-shared hiperspace

Like the problem state program with PSW key 8 - F, the supervisor state program in
cross memory mode can use HSPSERV with an ALET to access a non-shared
standard hiperspace. For example, in Figure 7-7, PGM1 in AS1 can place an entry
for HS1 on the DU-AL and receive the ALET. PGM1 can then PC to AS2, passing
the STOKEN and ALET to PCRTN. PCRTN can access HS1.

Note that PCRTN could not access HS1 unless it used HSPALET on HSPSERV.

PCRTN

PGM 1

PC
ALESERV . . .

DSPSERV . . .

HSPSERV with ALET

HSTOK DS CL8
HAL DS F

STOK DS CLB
AL DS F

AS2

AS1 HS1

Non-shared

standard

DU-AL

Figure 7-7. A Supervisor State Program Using a Non-Shared Standard Hiperspace

Chapter 7. Creating and Using Hiperspaces 7-17

The supervisor state program using shared standard and ESO hiperspaces

Supervisor state or PSW 0 - 7 programs can access any shared standard or ESO
hiperspace, providing they have the STOKEN of the hiperspace. They are not
required to have an ALET.

Figure 7-8 illustrates two programs in two address spaces. Both of these programs
can access data in HS1 without using the HSPALET parameter. PGM1, the creator
of HS1, passes the STOKEN of HS1 to PGM2.

With a little more effort, PGM1 and PGM2 in Figure 7-11 on page 7-26 could get
faster transfer of data to and from expanded storage; “Obtaining Improved Data
Transfer To and From a Hiperspace” on page 7-25 describes how to gain the added
performance. An example of PGM1 and PGM2 using ALETs on HSPSERV is in that
section.

Obtaining an ALET for a Hiperspace
Use ALESERV ADD to obtain an ALET and place an entry on a DU-AL or
PASN-AL. Whether a program can use ALESERV ADD depends on the authority of
the program, the type of hiperspace, and whether the program is in cross memory
mode. The rules that apply to the programs that use ALESERV ADD are described
in Table 7-5 on page 7-19.

PGM 1

PGM 2

HSPSERV without ALET

HSPSERV without ALET

DSPSERV . . .

DSPSERV . . .

HSTOK DC CLB

HSSTOK DC CLB

AS1

AS2

HS1

ESO or

shared standard

Figure 7-8. A Supervisor State Program Using a Shared Standard Hiperspace

7-18 z/OS V1R3.0 MVS Extended Addressability Guide

Table 7-5. Rules for Adding Access List Entries for Hiperspaces

Function Type of hiperspace A problem state, ke y 8 - F program: A supervisor state or key 0-7
program:

Add entries to the
DU-AL

Non-shared
standard

Can add entries for a hiperspace it
owns.

Can add entries if the caller’s and
owner’s home address space is the
same.

Shared standard
and ESO

Cannot add entries for the hiperspace
to its DU-AL.

Can add entries. For ESO
hiperspace, see Programming note
1.

Add entries to the
PASN-AL

Non-shared
standard

Cannot add entries. Can add entries if caller’s primary
address space is the same as the
owner’s home address space.

Shared standard
and ESO

Cannot add entries. Can add entries. For ESO
hiperspace, see Programming note
1.

Programming notes :

1. Do not add an entry for an ESO hiperspace to any access list that is available
to a problem state program with PSW 8 - F. In other words, do not add an entry
to a PASN-AL if unauthorized programs will be executing in the address space.
Do not add an entry to a DU-AL if its TCB will be representing an unauthorized
program.

2. Use ALESERV ADD with hiperspaces only if you have the move-page facility
installed.

3. The system rejects an ALESERV ADD request if the hiperspace is currently
defined as a data-in-virtual object.

Example of Adding an Access List Entry for a Hiperspace
The following code uses DSPSERV to create a non-shared standard hiperspace
named TEMP. The system returns the STOKEN of the hiperspace in HSPCSTKN
and the origin of the hiperspace in HSPCORG. The ALESERV ADD macro returns
the ALET in HSPCALET. The program uses the ALET on the HSPALET parameter
on HSPSERV to access the hiperspace.

DSPSERV CREATE,TYPE=HIPERSPACE,NAME=HSPCNAME,
STOKEN=HSPCSTKN,BLOCKS=HSPBLCKS,ORIGIN=HSPCORG

ALESERV ADD,STOKEN=HSPCSTKN,ALET=HSPCALET,AL=PASN
.

HSPCSTKN DS CL8 HIPERSPACE STOKEN
HSPCALET DS F HIPERSPACE ALET
HSPCORG DS F HIPERSPACE ORIGIN RETURNED
HSPCNAME DC CL8’TEMP ’ HIPERSPACE NAME
HSPBLCKS DC F’1000’ HIPERSPACE SIZE (IN 4K BLOCKS)

Obtaining and Passing ALETs for Hiperspaces
To allow other programs to share hiperspaces, a program passes the ALET of the
hiperspace to other programs. Because ALETs index into specific access lists, a
program can pass:

v An ALET that indexes into an entry on a DU-AL if the passing program and the
receiving code are represented by the same TCB

v An ALET that indexes into an entry on a DU-AL if the passing program attached
the receiving program (using the ALCOPY parameter on ATTACH or ATTACHX)
and passed the entry for the hiperspace on the DU-AL

v An ALET that indexes into the PASN-AL if the ALET indexes into the PASN-AL of
the receiving program.

Chapter 7. Creating and Using Hiperspaces 7-19

Generally, when two programs in two address spaces share the data in the same
hiperspace, the programs must both use ALESERV to add entries to their access
lists.

Deleting an Access List Entry for a Hiperspace
Access lists have a limited size; the DU-AL has up to 509 entries and the PASN-AL
has up to 510 entries. Therefore, it is a good programming practice to delete entries
from an access list when the entries are no longer needed. The specific rules are:

v If a program needs an entry for a short period of time, it should delete the entry
when it no longer needs the entry.

v If a program adds an entry and uses that entry during execution, the program
does not need to delete the entry; the system deletes the entry when the task
terminates.

v Once the entry is deleted, the system can immediately reuse the ALET.

Use ALESERV DELETE to delete an entry on an access list. The ALET parameter
identifies the specific entry.

Programs that share hiperspaces with other programs have another action to take
when they delete an entry from an access list. They should notify the other
programs that the entry is no longer connecting the ALET to the hiperspace.
Otherwise, those programs might continue to use an ALET for the deleted entry.
See “ALET Reuse by the System” on page 5-25 for more information.

Example of Deleting a Hiperspace Entry from an Access List
The following example deletes the entry for the ALET at location HSPCALET. The
example also includes the deletion of the hiperspace with a STOKEN at location
HSPCSTKN.

ALESERV DELETE,ALET=HSPCALET REMOVE HS FROM AL
DSPSERV DELETE,STOKEN=HSPCSTKN DELETE THE HS
.

HSPCSTKN DS CL8 HIPERSPACE STOKEN
HSPCALET DS F HIPERSPACE ALET

If the program does not delete an entry, the entry remains on the access list until
the work unit terminates. At that time, the system frees the access list entry.

Transferring Data To and From Hiperspaces
Before it can reference data or manipulate data in a hiperspace, the program must
bring the data into the address space. The HSPSERV macro performs the transfer
of data between the address space and the hiperspace.

On the HSPSERV macro, the write operation transfers data from the address
space to the hiperspace. The read operation transfers the data from the
hiperspace to the address space. HSPSERV allows multiple reads and writes to
occur at one time. This means that one HSPSERV request can transfer the data in
more than one data area in a hiperspace to an equal number of data areas in an
address space. Likewise, one HSPSERV request can write data from more than
one buffer area in an address space to an equal number of areas in a hiperspace.

Figure 7-9 shows three virtual storage areas that you need to identify when you
request a data transfer:

v The hiperspace

v The buffer area in the address space that is the source of the write operation and
the target of the read operation

7-20 z/OS V1R3.0 MVS Extended Addressability Guide

v The data area in the hiperspace that is the target of the write operation and the
source of the read operation.

On the HSPSERV macro, you identify the hiperspace and the areas in the address
space and the hiperspace:

v STOKEN specifies the STOKEN of the hiperspace.

v RANGLIST specifies a list of ranges that indicate the boundaries of the buffer
areas in the address space and the data area in the hiperspace.

v NUMRANGE optionally specifies the number of data areas the system is to read
or write. The default is one data area.

HSPSERV has certain restrictions on these areas. Two restrictions are that the data
areas must start on a 4K byte boundary and their size must be in multiples of 4K
bytes. Other requirements are listed in the description of HSPSERV in z/OS MVS
Programming: Authorized Assembler Services Reference ENF-IXG. Read the
requirements carefully before you issue the macro.

The system does not always preserve the data in the areas that are the source for
the read and write operations. Figure 7-9 tells you what the system does with the
areas after it completes the transfer. The sections Read and Write Operations for
Standard Hiperspaces and “Read and Write Operations For Expanded Storage Only
Hiperspaces” on page 7-24 describe how you use the HSPSERV macro.

Read and Write Operations for Standard Hiperspaces
After the write operation for standard hiperspaces, the system does not preserve
the data in the address space. It assumes that you have another use for that buffer
area, such as using it as the target of another HSPSERV SREAD operation.

After the read operation for standard hiperspaces, the system gives you a choice of
saving the source data in the hiperspace. If you will use the data in the hiperspace
again, ask the system to preserve the data; specify RELEASE=NO on HSPSERV

Address Space Hiperspace

buffer area

data area

HSPSERV . . .

HSPSERV . . .

After a write operation:
- For standard hiperspaces, the data

is unpredictable. The buffer area
is available for reuse.

After a read operation:
- For standard hiperspaces, the data

is preserved unless you specify
RELEASE=YES.

- For ESO hiperspaces, the data is
preserved unless you specify
KEEP=NO.

- For ESO hiperspaces, the data is
preserved (but volatile).

write operation

read operation

Figure 7-9. Illustration of the HSPSERV Write and Read Operations

Chapter 7. Creating and Using Hiperspaces 7-21

SREAD. Unless a subsequent SWRITE request changes the data in the source
area, that same data will be available for subsequent SREAD requests.
RELEASE=NO provides your program with a backup copy of the data in the
hiperspace.

If you specify RELEASE=YES on HSPSERV SREAD, the system releases the
hiperspace pages after the read operation and returns the expanded storage (or
auxiliary storage) that backs the source area in the hiperspace. RELEASE=YES
tells the system that your program does not plan to use the source area in the
hiperspace as a copy of the data after the read operation. Note that when a
hiperspace is not fetch-protected, HSPSERV SREAD,RELEASE=NO works even
when the program’s PSW key does not match the storage key of the hiperspace.

To use the HSPSERV macro without an ALET for a non-shared standard
hiperspace, the buffer area in the address space must be in the program’s home
address space. That is, the program cannot be in cross memory mode (where
PASN is not equal to HASN).

A program cannot issue a HSPSERV SWRITE to an area of a hiperspace that has
a DIV SAVE in progress.

See “Example of Creating a Standard Hiperspace and Using It” for an example of
the HSPSERV SREAD and HSPSERV SWRITE macros.

Example of Creating a Standard Hiperspace and Using It
The following example creates a non-shared standard hiperspace named
SCROLLHS. The size of the hiperspace is 20 blocks. The program:

v Creates a non-shared standard hiperspace 20 blocks in size

v Obtains four pages of address space storage aligned on a 4K-byte address

v Sets up the SWRITE range list parameter area to identify the first two pages of
the address space storage

v Initializes the first two pages of address space storage that will be written to the
hiperspace

v Issues the HSPSERV SWRITE macro to write the first two pages to locations
4096 through 12287 in the hiperspace.

Later on, the program:

v Sets up the SREAD range list parameter area to identify the last two pages of
the four-page address space storage

v Issues the HSPSERV SREAD macro to read the blocks at locations 4096
through 12287 in the hiperspace to the last two pages in the address space
storage.

Figure 7-10 on page 7-23 shows the four-page area in the address space and the
two block area in the hiperspace. Note that the first two pages of the address space
virtual storage are unpredictable after the SWRITE operation.

7-22 z/OS V1R3.0 MVS Extended Addressability Guide

* DSPSERV CREATES A STANDARD TYPE HIPERSPACE OF 20 4096-BYTE BLOCKS
*

DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
BLOCKS=20,STOKEN=HSSTOKEN

*
* THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE.
* THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
* - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
* - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
*

STORAGE OBTAIN,LENGTH=4096*4,BNDRY=PAGE
ST 1,ASPTR1 * SAVES THE SWRITE SOURCE ADDRESS
MVC 0(20,1),SRCTEXT1 * INITIALIZES SOURCE PAGE ONE
A 1,ONEBLOCK * COMPUTES SOURCE PAGE TWO ADDRESS
MVC 0(20,1),SRCTEXT2 * INITIALIZES SOURCE PAGE TWO

*

* HSPSERV WRITES TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE
*

HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1,NUMRANGE=ONE
*
* THE SYSTEM REUSES THE FIRST TWO ADDRESS SPACE PAGES AFTER THE SWRITE

.

* SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
* ADDRESS SPACE PAGES
*

L 2,ASPTR1 * OBTAINS THE ADDRESS OF PAGE 1
A 2,ONEBLOCK * COMPUTES THE SREAD TARGET ADDRESS
A 2,ONEBLOCK * COMPUTES THE SREAD TARGET ADDRESS
ST 2,ASPTR2 * SAVES IN SREAD RANGE LIST

*
* HSPSERV READS TWO BLOCKS OF DATA FROM THE HIPERSPACE TO THE

THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE
*

HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2,NUMRANGE=ONE
*
* DATA AREAS AND CONSTANTS
*
HSNAME DC CL8’SCROLLHS’ * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN FOR THE HIPERSPACE
ONEBLOCK DC F’4096’ * LENGTH OF ONE BLOCK OF STORAGE
SRCTEXT1 DC CL20’ INVENTORY ITEMS ’
SRCTEXT2 DC CL20’ INVENTORY SURPLUSES’
ONE DC F’1’ * NUMBER OF RANGES

DS 0F

Standard

Hiperspace

SWRITE

SREAD

Address Space

DSPSERV . . .

PROG 1

HSPSERV SWRITE . . .

HSPSERV SREAD . . .

SWRITE range list

SREAD range list

Figure 7-10. Example of Creating a Standard Hiperspace and Transferring Data

Chapter 7. Creating and Using Hiperspaces 7-23

RANGPTR1 DC A(SWRITLST) * ADDRESS OF THE SWRITE RANGE LIST
RANGPTR2 DC A(SREADLST) * ADDRESS OF THE SREAD RANGE LIST

DS 0F
SWRITLST DS 0CL12 * SWRITE RANGE LIST
ASPTR1 DS F * START OF ADDRESS SPACE SOURCE
HSPTR1 DC F’4096’ * TARGET LOCATION IN HIPERSPACE
NUMBLKS1 DC F’2’ * NUMBER OF 4K BLOCKS IN SWRITE

DS 0F
SREADLST DS 0CL12 * SREAD RANGE LIST
ASPTR2 DS F * TARGET LOCATION IN ADDRESS SPACE
HSPTR2 DC F’4096’ * START OF HIPERSPACE SOURCE
NUMBLKS2 DC F’2’ * NUMBER OF 4K PAGES IN SREAD

Read and Write Operations For Expanded Storage Only Hiperspaces
The system backs ESO hiperspaces with expanded storage, a finite resource that
many programs compete for. Because an ESO hiperspace is backed with expanded
storage, it can be accessed very quickly. However, because of the contention for
expanded storage, the data in the hiperspace might not be there when you need it.
Because of this uncertainty, your program must have an alternate way to retrieve or
recreate the data.

HSPSERV CREAD transfers data from a source location in an ESO hiperspace to
an address space. If all blocks requested are available in the hiperspace (that is,
are backed by expanded storage) then the system performs the read operation.
However, if one or more blocks to be read are no longer available in the
hiperspace, then the system rejects the request and returns a failing return code. If
the HSPSERV CREAD is successful, the system moves the data to the buffer area
in your address space and preserves the data in the source area of the hiperspace,
when possible.

HSPSERV CWRITE transfers data from a source location in an address space to a
hiperspace. If the system is unable to write all the requested blocks to the
hiperspace (because of a shortage of expanded storage), then it rejects the
request. In this case, the data in the target area of the hiperspace is volatile. After
the system rejects a HSPSERV CWRITE request, do not issue HSPSERV
CREAD using that target area as the source for the CREAD until you have
successfully completed a HSPSERV CWRITE to the same area.

You can request that the system preserve the source data in the address space
after it successfully completes the HSPSERV CWRITE operation. If your program
will use this same source data again, specify KEEP=YES on HSPSERV (or use the
default). KEEP=NO tells the system that you will not be using the source data
again. In this case, the system can reuse the pages that back the address space
buffer area. In most cases, KEEP=NO gives your program better performance than
KEEP=YES.

To use the HSPSERV macro for an ESO hiperspace, the buffer area that is the
source of the CWRITE and the target of the CREAD can be in the caller’s home
address space as well as the caller’s primary address space or the common
storage area (CSA). This flexibility means that the caller can use the HSPSERV
macro while in cross memory mode (that is, where PASN is not equal to HASN).

The following example shows a program transferring data to and from an ESO
hiperspace. The address space has one buffer area to receive the hiperspace data.
For an example of storing information into the range list, see “Example of Creating
a Standard Hiperspace and Using It” on page 7-22.

7-24 z/OS V1R3.0 MVS Extended Addressability Guide

* GENERATE DATA AND WRITE IT TO THE HIPERSPACE
.

* BUILD RANGE LIST AND PLACE POINTER TO ADDRESS OF LIST IN RANGPTR
.
HSPSERV CWRITE,ADDRSP=HOME,STOKEN=HSSTOK,RANGLIST=RANGPTR, X

RETCODE=SRVRCODE,RSNCODE=SRSNCODE
.

* READ FROM THE HIPERSPACE, IF EVERYTHING HAS BEEN SUCCESSFUL
.
HSPSERV CREAD,STOKEN=HSSTOK,RANGLIST=RANGPTR, X

RETCODE=SRVRCODE,RSNCODE=SRSNCODE
.

HSSTOK DS CL8 STOKEN RETURNED FROM DSPSERV CREATE
RANGPTR DC A(RANGLIST) ADDRESS OF RANGLIST PARM AREA
RANGLIST DS 0CL12
ASLOC DS AL4 ADDRESS OF START OF ADDRESS SPACE AREA
HSLOC DS AL4 ADDRESS OF HIPERSPACE AREA TO WRITE TO/FROM
NUMBLKS DS F NUMBER OF BLOCKS TO READ/WRITE
SRVRCODE DS F RETURN CODE
SRSNCODE DS F REASON CODE

Obtaining Improved Data Transfer To and From a Hiperspace
A program can get faster or more efficient data transfer by taking advantage of the
move-page facility or the Asynchronous Data Mover Facility (ADMF). By specifying
the HSPALET parameter on the HSPSERV macro, a program can get faster data
movement between central storage and expanded storage. If the data identified on
HSPSERV is in expanded storage, HSPSERV takes advantage of the move-page
facility. If the data is in auxiliary storage, the data transfer still occurs, but without
the benefit of the move-page facility.

Through the IOSADMF macro, a program can use ADMF to get more efficient data
movement between central and expanded storage. Data transfer with the ADMF
might be more efficient than with the move-page facility depending on the number
of pages of data you want to transfer.

The IOSADMF macro provides a programming interface to the ADMF. IOSADMF
can be used with standard and ESO hiperspaces. With IOSADMF, programs that
buffer large amounts of storage in hiperspaces become more efficient because of
reduced overall processor use. Processor cycles previously used to move data now
become available for the system or other programs to use.

Programs that want to reduce processor time for buffer management, but that find
the response time associated with I/O buffering unacceptable, will find the
IOSADMF service particularly useful. However, IBM recommends that you design
programs that move data to use either the ADMF (IOSADMF macro) or the
move-page facility (HSPSERV macro) for the following reasons:

v You cannot use IOSADMF to transfer data unless data already is stored in the
hiperspace. Therefore, under certain circumstances, you must use HSPSERV
before using IOSADMF to transfer data.

v If the ADMF is not available, your program can attempt the data transfer again by
issuing HSPSERV.

v If your program moves variable amounts of data, you might want to design your
program to determine which facility best matches each data transfer request.

Which facility best matches your request depends on the number of pages you
want to transfer. When the ADMF is available and the program issues IOSADMF to
move data, the system determines which facility is appropriate by comparing the

Chapter 7. Creating and Using Hiperspaces 7-25

number of pages with a system-specific value. If you want to know what that value
is so your program can determine which facility to use, issue IOSADMF with the
CROSSOVER parameter, and the system returns the value to you.

z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG
describes the HSPSERV macro and the IOSADMF macro.

Using the Move-Page Facility
As an example of using the HSPSERV macro with the HSPALET parameter,
suppose PGM1 and PGM2 that were illustrated in Figure 7-8 on page 7-18 want to
gain fast transfer of data to and from expanded storage. Both programs use
ALESERV ADD to add entries to access lists; PGM1 adds to its PASN-AL and
PGM2 adds to its DU-AL. They use HSPALET on HSPSERV. The HSPALET
parameter is available to both problem state programs and supervisor state
programs. Figure 7-11 describes this scenario.

Before you issue the HSPSERV macro with the HSPALET parameter, place the
address of a 144-byte work area in GPR 13 and zero in AR 13.

Restrictions on the combined use of hiperspaces and data-in-virtual are listed in
“Using Data-in-Virtual with Standard Hiperspaces” on page 7-39.

Example of an HSPSERV with Additional Performance

The following example shows a program creating a non-shared standard
hiperspace. To get additional performance from HSPSERV, the program obtains the
ALET from the ALESERV macro and uses the ALET as input to HSPSERV. The
example assumes the ASC mode is primary.
...
* DSPSERV CREATES A NON-SHARED STANDARD HIPERSPACE OF 20 4096 BYTE-BLOCKS

PGM 1

PGM 2

ALESERV

ALET
HSPSERV with

. . .

DSPSERV
ALESERV

. . .
. . .

HSPSERV with ALET

HSTOK DC CL8
HALET DC F

HSSTOK DC CL8
HSALET DC F

PASN-AL

AS1

AS2

HS1

ESO or

shared standard

DU-AL

Figure 7-11. Gaining Fast Data Transfer To and From Expanded Storage

7-26 z/OS V1R3.0 MVS Extended Addressability Guide

*
DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X

SHARE=NO,BLOCKS=20,STOKEN=HSSTOKEN,ORIGIN=HSORIG1
*
* ALESERV RETURNS AN ALET ON THE DU-AL FOR THE HIPERSPACE
*

ALESERV ADD,STOKEN=HSSTOKEN,ALET=HSALET,AL=WORKUNIT
*

* THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE,
* THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
* - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
* - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
* COPY INTO FIRST AND SECOND PAGES THE DATA TO BE WRITTEN TO HIPERSPACE

.
STORAGE OBTAIN,LENGTH=4096*4,BNDRY=PAGE
ST 1,ASPTR * SAVE ADDR SPACE STORAGE ADDRESS
MVC 0(20,1),SRCTEXT1 * INIT FIRST ADDR SPACE PAGE
A 1,ONEBLK * COMPUTE PAGE TWO ADDRESS
MVC 0(20,1),SRCTEXT2 * INIT SECOND ADDR SPACE PAGE

.

* SET UP THE SWRITE RANGE LIST TO WRITE FROM THE FIRST AND SECOND
* ADDRESS SPACE PAGES INTO THE HIPERSPACE

.
L 1,ASPTR * GET FIRST ADDR PAGE ADDRESS
ST 1,ASPTR1 * PUT ADDRESS INTO RANGE LIST

.

* SAVE CONTENTS OF AR/GPR 13 BEFORE RESETTING THEM FOR HSPSERV
.

ST 13,SAVER13 * SAVE THE CONTENTS OF GPR 13
EAR 13,13 * LOAD GPR 13 FROM AR 13
ST 13,SAVEAR13 * SAVE THE CONTENTS OF AR 13

.
* ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES
* AND WRITE TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE

.
SLR 13,13 * SET GPR 13 TO 0
SAR 13,13 * SET AR 13 TO 0
LA 13,WORKAREA * SET UP AR/GPR 13 TO WORKAREA ADDR
HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1,HSPALET=HSALET

* AFTER THE SWRITE, THE FIRST TWO ADDRESS SPACE PAGES MIGHT BE OVERLAID
.

* RESTORE ORIGINAL CONTENTS OF AR/GPR 13
.

L 13,SAVEAR13 * SET GPR 13 TO SAVED AR 13
SAR 13,13 * RESET AR 13
L 13,SAVER13 * RESET GPR 13

.

.
* SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
* ADDRESS SPACE PAGES WHAT WAS PREVIOUSLY WRITTEN TO THE HIPERSPACE

.
MVC HSORIG2,HSORIG1 * COPY ORIGIN OF HIPERSPACE TO HSORIG2
L 1,ASPTR * GET FIRST ADDR PAGE ADDRESS
A 1,TWOBLKS * COMPUTE THIRD PAGE ADDRESS
ST 1,ASPTR2 * PUT ADDRESS INTO RANGE LIST

.

* SAVE CONTENTS OF AR/GPR 13
.

ST 13,SAVER13 * SAVE THE CONTENTS OF GPR 13
EAR 13,13 * LOAD GPR 13 FROM AR 13
ST 13,SAVEAR13 * SAVE THE CONTENTS OF AR 13

.
* ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES,
* AND READ TWO BLOCKS OF DATA FROM THE HIPERSPACE INTO THE
* THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE USING HSPALET

Chapter 7. Creating and Using Hiperspaces 7-27

.
SLR 13,13 * SET GPR 13 TO 0
SAR 13,13 * SET AR 13 TO 0
LA 13,WORKAREA * SET UP AR/GPR 13 TO WORKAREA ADDR
HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2,HSPALET=HSALET

.
* RESTORE ORIGINAL CONTENTS OF AR/GPR 13

.
L 13,SAVEAR13 * SET GPR 13 TO SAVED AR 13
SAR 13,13 * RESET AR 13
L 13,SAVER13 * RESET GPR 13

.

* FREE THE ALET, FREE THE ADDRESS SPACE STORAGE, AND DELETE THE HIPERSPACE
.

* DATA AREAS AND CONSTANTS
.

HSNAME DC CL8’SCROLLHS’ * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN FOR THE HIPERSPACE
HSALET DS CL4 * ALET FOR THE HIPERSPACE
ASPTR DS 1F * LOCATION OF ADDR SPACE STORAGE
SAVER13 DS 1F * LOCATION TO SAVE GPR 13
SAVEAR13 DS 1F * LOCATION TO SAVE AR 13
WORKAREA DS CL144 * WORK AREA FOR HSPSERV
ONEBLK DC F’4096’ * LENGTH OF ONE BLOCK OF STORAGE
TWOBLKS DC F’8092’ * LENGTH OF TWO BLOCKS OF STORAGE
SRCTEXT1 DC CL20’ INVENTORY ITEMS ’
SRCTEXT2 DC CL20’ INVENTORY SURPLUSES’

DS 0F
RANGPTR1 DC A(SWRITLST) * ADDRESS OF SWRITE RANGE LIST
RANGPTR2 DC A(SREADLST) * ADDRESS OF SREAD RANGE LIST

DS 0F
SWRITLST DS 0CL12 * SWRITE RANGE LIST
ASPTR1 DS F * START OF ADDRESS SPACE SOURCE
HSORIG1 DS F * TARGET LOCATION IN HIPERSPACE
NUMBLKS1 DC F’2’ * NUMBER OF 4K BLOCKS IN SWRITE

DS 0F

SREADLST DS 0CL12 * SREAD RANGE LIST
ASPTR2 DS F * TARGET LOCATION IN ADDR SPACE
HSORIG2 DS F * START OF HIPERSPACE SOURCE
NUMBLKS2 DC F’2’ * NUMBER OF 4K BLOCKS IN SREAD

DS 0F

Using the ADMF
To use ADMF support for hiperspaces, design your program to do the following:

1. Determine if the ADMF is available by issuing the IOSADMF macro with the
QUERY parameter.

2. Create a hiperspace by issuing the DSPSERV macro with the CREATE
parameter.

Use caution if you specify CASTOUT=NO when creating a hiperspace. Because
CASTOUT=NO discourages the system from reclaiming expanded storage
areas, the amount of expanded storage available for system use is decreased.

3. Obtain an ALET associated with the hiperspace by issuing the ALESERV macro
with the STOKEN received from issuing the DSPSERV CREATE.

4. Put data in the hiperspace by issuing the HSPSERV macro.

You cannot use IOSADMF to transfer data until the hiperspace already contains
data. If the hiperspace storage gets reclaimed, you must add data to the
hiperspace again with HSPSERV. (If the hiperspace is a standard hiperspace,
HSPSERV will retrieve data from auxiliary storage to refresh the hiperspace
data.)

7-28 z/OS V1R3.0 MVS Extended Addressability Guide

5. Use the IOSADMF macro with the hiperspace’s ALET to transfer data to and
from the hiperspace.

The IOSADMF macro AREAD request transfers data from the hiperspace to the
program’s primary address space. The IOSADMF macro AWRITE request
transfers data from the user’s primary address space to the hiperspace. If the
IOSADMF macro is issued before data is added to the hiperspace, the
IOSADMF request will fail. A program cannot issue an IOSADMF macro
AWRITE request to an area of a hiperspace that has a DIV SAVE in progress.

6. If your program receives a return code 4, you can try the same operation using
the HSPSERV macro. When designing your program to use IOSADMF, check
the specific actions for the IOSADMF return and reason code in z/OS MVS
Programming: Authorized Assembler Services Reference ENF-IXG to determine
when you can attempt the same operation using HSPSERV instead of
IOSADMF.

More than one IOSADMF request can be active for a hiperspace. When you have
more than one active IOSADMF request, keep track of the requests and ensure that
all data transfer is complete before deleting the hiperspace. If there are outstanding
active requests and you issue DSPSERV DELETE for a hiperspace, your program
will abnormally end and the hiperspace will not be deleted. If you cannot determine
whether all outstanding IOSADMF requests have completed, you can issue
IOSADMF APURGE to stop any outstanding requests.

IOSADMF APURGE should be used only as a last resort because of data integrity
concerns. IOSADMF APURGE immediately stops data transfer for every
outstanding IOSADMF request for the specified hiperspace, regardless of the state
of those data transfers, and abnormally ends any active operation to the
hiperspace. If a new request is subsequently started for the specified hiperspace,
the request will process.

If you have a single unit of work that creates the hiperspace, issues the IOSADMF
requests, and deletes the hiperspace, you do not have to be concerned about
outstanding requests; the system completes the data transfer before processing the
delete request. The following is an example of data transfer using the ADMF.

02 Description = Sample program to illustrate how to use the *
* IOSADMF services. *
* *
* *
02 Function = *
* *
* ADMFSAMP does not perform any useful work; *
* however it does illustrate how the IOSADMF *
* services are used. ADMFEXMP will create a *
* hiperspace, create an address space buffer, *
* initialize the address space buffer, use *
* HSPSERV to write data to the hiperspace *
* from the address space buffer, and then *
* use IOSADMF to read data from the hiperspace *
* back into the address space buffer. *
* In more detail, here is what ADMFEXMP does: *
* - Changes mode to supervisor state key 0. *
* IOSADMF requires the caller to be authorized. *
* - Obtains a dynamic area. ADMFSAMP is *
* reentrant and therefore requires a *
* dynamic area. ADMFSAMP was written *
* as a reentrant routine for illustration *
* and independence of caller’s mode or *
* key. *

Chapter 7. Creating and Using Hiperspaces 7-29

* - Determines if ADMF is available on the *
* current machines by issuing IOSADMF with *
* the AQUERY service. *
* - Creates a hiperspace *
* - Obtains an address space buffer area and *
* clears it. *
* - Initializes the address space buffer area *
* - Writes the address space buffer pages to *
* the hiperspace *
* - Clears the address space buffer area *
* - Fixes the page address space storage *
* - Uses IOSADMF to read the hiperspace pages *
* back into the address space storage areas *
* - Cleans up resources and returns to caller *
* *
* Again, this routine is only for illustration *
* purposes. *
* *
* *

* SECURITY NOTICE = This sample should be used ONLY on a test *
* system. It does not contain authorization *
* checking required for running on a *
* production system. *
* *
* ENVIRONMENT: AMODE = 31 *
* RMODE = 31 *
* STATE = SUPERVISOR *
* KEY = 0 *
* RENT = YES *
* *
* *
* INPUT: NONE *
* *
* REGISTER USAGE: *
* R9 BASE REGISTER FOR LOAD MODULE *
* R6 POINTS TO DYNAMIC AREA *
* ALL OTHERS STANDARD USAGE *
...

EJECT
ADMFEXMP CSECT
ADMFEXMP AMODE 31 31-BIT ADDRESSING MODE
ADMFEXMP RMODE ANY Rmode any

SPACE 1
...
* REGISTER ASSIGNMENTS *
...
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6 Dynamic area register
R7 EQU 7
R8 EQU 8
R9 EQU 9 Module base register
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

SPACE 3
TITLE ’ADMFEXMP - ADM Sample for AQUERY’

...
* *
* Standard Entry Linkage *

7-30 z/OS V1R3.0 MVS Extended Addressability Guide

* *
...

PRINT GEN
USING *,R9 Sets up base reg
LR R9,R15 Establish module base

ENTRY STM R14,R12,12(R13) Save caller’s regs
MODESET KEY=ZERO,MODE=SUP
LA R0,DYNSIZE Load length of dynamic area
STORAGE OBTAIN,LENGTH=((R0)),SP=233 Gets dynamic area
LR R6,R1 Gets dynamic area address

USING DYNAREA,R6 Sets up dynamic area
ST R13,SAVEBK Save caller’s save area addr
ST R6,SAVEFW Save ADMFEXMP save area address
B MAINLINE
DC CL8’ADMFEXMP’
DC CL8’&SYSDATE’
DC CL8’&SYSTIME’
TITLE ’ADMFEXMP - ADMF mainline ’

...
* *
* MAINLINE *
* *
...
MAINLINE DS 0H

L 10,X’10’ Load CVT pointer
USING CVT,10
TM CVTDCB,CVTOSEXT Is the OSLEVEL extension present
BNO NO_ADMF No, pre-MVS/SP Version 3 system

*
TM CVTOSLV1,CVTH4430 Running on version HBB4430?
BNO NO_ADMF No, pre-HBB4430 system. ADMF

* supported on HBB4430 and above
*
* Running on HBB4430 system. Must determine if ADMF
* software and hardware have been installed on this
* processor
*
...
* *
* Issues the IOSADMF macro with the AQUERY parameter *
* to determine if the ADMF hardware and software are *
* available. *
* *
* Note - the IOSADMF macro may be issued on an HBB4430 *
* system, however, the full support for ADMF requires *
* the ADMF PTF as well as hardware support. *
* *
...

IOSADMF AQUERY, X
CROSSOVER=CROSSOVER_#, X
RETCODE=ADMF_INSTALLED_RC, X
RSNCODE=REASONCODE, X
MF=(E,ADMFLIST)

L R15,ADMF_INSTALLED_RC Obtains return code from
* parameter list

LTR R15,R15 Test for 0 return code
BNZ NO_ADMF

ADMF_INSTALLED DS 0H ADM support is available
*...
*
* ADMF is installed and available. Begin function processing to
* illustrate how ADMF is used
*
*...
*

Chapter 7. Creating and Using Hiperspaces 7-31

BAL R14,CREATE_HS Build Hiperspace
LTR R15,R15 Test for 0 return code
BNZ EXIT Exit if bad RC

BAL R14,AS_STORAGE Get address space storage
BAL R14,INIT_AS Initialize addr space storage
BAL R14,ISSUE_HSPSERV Initialize HS space storage
LTR R15,R15 Test for 0 return code
BNZ EXIT Exit if bad RC
BAL R14,ISSUE_IOSADMF Use ADMF to read data from HS

*...
* Begins clean up operations
*...

DSPSERV DELETE,STOKEN=HSSTOKEN
LR R3,R1 Loads area addr in R3
A R3,LENGTH_AS_AREA Adds length of area to addr
BCTR R3,0 Subtracts 1 to get end addr
PGSER R,FREE,A=(R1),EA=(R3),ECB=0
L R3,LENGTH_AS_AREA
STORAGE RELEASE,SP=229,ADDR=ASPTR,LENGTH=(R3)
B EXIT

NO_ADMF DS 0H
*...
*
* ADM support is either not installed or not
* available on this release
*
*...

WTO ’ADMFEXMP - ADMF not installed. Sample ends’, X
ROUTCDE=(11),DESC=(2)
LA R3,12 Loads failing return code
ST R3,RETURNCODE Stores return code for X

future use
EXIT DS 0H

L R13,SAVEBK Reloads caller’s save
* area addr into 11

L R12,RETURNCODE Saves return code
* in reg 12

LA R0,DYNSIZE Loads dynamic area size
* FREEMAIN R,LV=(0),A=(6),SP=233 Frees dynamic area

STORAGE RELEASE,SP=233,ADDR=(R6),LENGTH=(R0)
MODESET KEY=NZERO,MODE=PROB
LM R14,R11,12(R13) Loads return regs
LR R15,R12 Loads return code
BR R14 Returns to caller

*
*

SPACE 2

*...
*
* Subroutine to create Hiperspace
*
* DSPSERV creates a non-shared standard hiperspace
*
* Since this sample is for illustration only, the hiperspace size
* will be one block, or one page, larger than the CROSSOVER value.
*
*...
CREATE_HS DS 0H Create Hiperspace routine

STM R14,R12,12+LCL_SAVEAREA Save registers
L R1,CROSSOVER_# Obtains the CROSSOVER #
AL R1,=F’1’ Adds one to the CROSSOVER
ST R1,NUM_BLOCKS Stores the number of blocks

DSPSERV CREATE, X
NAME=HSNAME, X
TYPE=HIPERSPACE, X
HSTYPE=SCROLL, X

7-32 z/OS V1R3.0 MVS Extended Addressability Guide

SHARE=NO, X
BLOCKS=NUM_BLOCKS, X
STOKEN=HSSTOKEN, X
ORIGIN=HSORIG, X
MF=(E,DSPSLIST)

ST R15,RETURNCODE Saves return code
LTR R15,R15 Test for 0 return code
BNZ SKIP_ALESERV Skip ALESERV if bad RC

*...
*
* The IOSADMF service requires an ALET as input. The following
* ALESERV service will place the hiperspace ALET on the program’s
* access list.
*
*...

ALESERV ADD, X
STOKEN=HSSTOKEN, X
ALET=HSALET, X
AL=WORKUNIT, X
MF=(E,ALESLIST)

SKIP_ALESERV DS 0H
LM R14,R12,12+LCL_SAVEAREA Load Register
L R15,RETURNCODE Loads return code
BR R14 Returns to caller

*...
*
* Subroutine to obtain and initialize address space storage areas
*
*...
AS_STORAGE DS 0H Obtains address space storage

STM R14,R12,12+LCL_SAVEAREA Save registers
L R5,ONE_PAGE
L R3,NUM_BLOCKS Loads the size of hiperspace

* NOTE: For this sample, the
* hiperspace and address
* space areas are made to
* be the same size for
* simplicity.

MR R2,R5 Calculates length of storage
* to obtain

ST R3,LENGTH_AS_AREA
STORAGE OBTAIN,LENGTH=((R3)),BNDRY=PAGE,SP=229

*
ST R1,ASPTR Saves the addr of data area
L R2,ASPTR Loads R2 with address of

* the obtained area in
* preparation for clearing
* using the MVCL.

L R3,LENGTH_AS_AREA Loads length of area into R3
SR R4,R4 Setting R4/R5 pair to zero
SR R5,R5 tells MVCL to clear area
MVCL R2,R4 Clear obtained area

*
LM R14,R12,12+LCL_SAVEAREA Load Register
BR R14 Returns to caller

*...
*
* Subroutine to initialize the address space area with data to be
* stored in the hiperspace.
*
* This subroutine loops through all of the address space buffer
* pages and initializes each page with some text data.
* The data placed in the address space buffer area is dummy data
* for illustration. It places some text at the top of each
* page and places the page number in hex after the text.
*
*...

Chapter 7. Creating and Using Hiperspaces 7-33

INIT_AS DS 0H Initialize addr space area
STM R14,R12,12+LCL_SAVEAREA Save registers

BLOCK_INDEX EQU R2 Make loop control easier to X
read by using equate for index

AS_POINTER EQU R3 Make address space area easierX
to follow by using equate

LA BLOCK_INDEX,1 Initializes block index
L AS_POINTER,ASPTR Gets addr space pointer
USING PAGE_MAP,AS_POINTER Use the PAGE_MAP dummy X

section
INIT_LOOP DS 0H Beginning of WHILE loop

CL BLOCK_INDEX,NUM_BLOCKS IF block_index greater X
num_blocks THEN

BH INIT_COMPLETE Exits loop if complete
MVC PAGE_TEXT_TAG,BLOCK_CONST Place text tag
ST BLOCK_INDEX,PAGE_INDEX_TAG Place hex tag
AL BLOCK_INDEX,=F’1’ Index to next page
AL AS_POINTER,ONE_PAGE Point to next page
B INIT_LOOP

INIT_COMPLETE DS 0H
LM R14,R12,12+LCL_SAVEAREA Load Register
BR R14 Returns to caller

*...
*
* Subroutine to Initialize the Hiperspace
* ---------------------------------------
*
* HSPSERV initializes hiperspace blocks. Before the hiperspace
* can be used by IOSADMF, it must be initialized using the HSPSERV
* service. The HSPSERV service causes hiperspace pages to be
* backed with actual expanded storage pages. Even though ADMFEXMP
* created the hiperspace earlier, the system does not actually
* allocate expanded storage pages until data is placed into them.
* The following HSPSERV service will cause expanded storage pages
* to be backed.
*...
ISSUE_HSPSERV DS 0H Initialize hiperspace routine

STM R14,R12,12+LCL_SAVEAREA Save registers
L R2,ASPTR Loads address space pointer
ST R2,ASPTR1 Saves address space pointer X

in range list
L R2,HSORIG Loads hiperspace block pointer
ST R2,HSORIG1 Saves hiperspace pointer in X

range list
L R2,NUM_BLOCKS Loads number of blocks to move
ST R2,NUMBLKS1 Saves number of blocks to X

move in range list
LA R2,SWRITLST Loads address of ranglist
ST R2,SWRITADDR Saves address of ranglist
LA R13,HSP_SAVEAREA

HSPSERV SWRITE, X
STOKEN=HSSTOKEN, X
HSPALET=HSALET, X
RANGLIST=SWRITADDR, X
MF=(E,HSPSLIST)

ST R15,RETURNCODE Saves return code
LM R14,R12,12+LCL_SAVEAREA Load Register
L R15,RETURNCODE Loads return code
BR R14 Returns to caller

*...
*
* Subroutine to use the IOSADMF service to read data from hiperspace
* --
*
* IOSADMF
*
*...

7-34 z/OS V1R3.0 MVS Extended Addressability Guide

ISSUE_IOSADMF DS 0H Uses the IOSADMF service
STM R14,R12,12+LCL_SAVEAREA Save registers
LR R3,R1 Loads area addr in R3
A R3,LENGTH_AS_AREA Adds length of area to addr
BCTR R3,0 Subtracts 1 to get end addr
PGSER R,FIX,A=(R1),EA=(R3),ECB=0
L R2,ASPTR Loads R2 with address of X

the address space area in X
preparation for clearing X
using the MVCL. R3 will X
contain the area’s length

L R3,LENGTH_AS_AREA Loads length to clear

SR R4,R4 Setting R4/R5 pair to zero
SR R5,R5 tells MVCL to clear area
MVCL R2,R4 Clear target area for the X

AREAD operation. For X
illustration purposes, the X
address space area is X
reused for the ADMF AREAD

L R2,ASPTR Loads address space pointer
ST R2,ASPTR2 Saves address space pointer X

in range list
L R2,HSORIG Loads hiperspace block pointer
ST R2,HSORIG2 Saves hiperspace pointer in X

range list
L R2,NUM_BLOCKS Loads number of blocks to move
ST R2,NUMBLKS2 Saves number of blocks to X

move in range list
LA R2,AREADLST Loads address of ranglist
ST R2,AREADADDR Saves address of ranglist

IOSADMF AREAD, X
ALET=HSALET, X
RANGLIST=AREADADDR, X
MF=(E,ADMFLIST)

ST R15,RETURNCODE Saves return code
LM R14,R12,12+LCL_SAVEAREA Load Register
L R15,RETURNCODE Loads return code
BR R14 Returns to caller

*..
* .
* Constants .
* .
*..
HSNAME DC CL8’ADMFHSPS’ Name for the hiperspace
ONE_PAGE DC F’4096’ Length of one page of
* storage
BLOCK_CONST DC CL7’Block #:’
*..
* .
* DSECTs to map save areas and dynamic areas .
* .
*..
DYNSTART DS 0H
DYNAREA DSECT
* Save area
SAVEXX DS F
SAVEBK DS F
SAVEFW DS F
SAVER14 DS F
SAVER15 DS F
SAVER0 DS F
SAVER1 DS F

DS 11F
DS 0D Force doubleword alignment

* Save area for internal subroutines
SPACE 2

Chapter 7. Creating and Using Hiperspaces 7-35

LCL_SAVEAREA DS 18F Local save area
HSP_SAVEAREA DS 32F HSPSERV save area

DS 0D Force doubleword alignment

*..
* .
* List forms of macros. The list and execute forms of these macros .
* are used because this module is reentrant. .
* .
*..
LIST_DSPSERV DSPSERV MF=(L,DSPSLIST)
DSP_END DS 0D
LIST_HSPSERV HSPSERV MF=(L,HSPSLIST)
HSP_END DS 0D
LIST_IOSADMF IOSADMF MF=(L,ADMFLIST)
ADMF_END DS 0D
ALESLIST ALESERV MF=L
ALES_END DS 0D
*..
* .
* Work variables and data structures local to this module .
* .
*..
HSSTOKEN DS CL8 STOKEN for the hiperspace
HSALET DS CL4 ALET for the hiperspace
ASPTR DS 1F Location of addr space
* storage
NUM_BLOCKS DS F Number of blocks in
* hiperspace
HSORIG DS F Hiperspace origin
CROSSOVER_# DS F Crossover number
SWRITADDR DS F Address of SWRITE ranglist
AREADADDR DS F Address of AREAD ranglist
ADMF_INSTALLED_RC DS F ADMF installed return code
LENGTH_AS_AREA DS F Length of addr space area
WORKAREA DS CL144 Work area for HSPSERV

DS 0F
SWRITLST DS 0CL12 SWRITE range list
ASPTR1 DS F Start of address space
HSORIG1 DS F Target location in hiperspace
NUMBLKS1 DS F Number of 4k blks in swrite

DS 0F
AREADLST DS 0CL12 AREAD and SREAD range list
ASPTR2 DS F Target location in AS
HSORIG2 DS F Start of hiperspace source
NUMBLKS2 DS F Number of 4k blocks in read
*
RETURNCODE DS F
REASONCODE DS F
END_DYN DS 0D
DYNSIZE EQU *-DYNAREA Calculates Dynamic area
*

PAGE_DSECT DSECT Mapping of a page
PAGE_MAP DS 0CL4096
PAGE_TEXT_TAG DS CL8 Top of page tag
PAGE_INDEX_TAG DS F Page index in hex

SPACE 2
ADMFEXMP CSECT

TITLE ’ADMFEXMP - DSECT MAPPINGS’
EJECT
CVT LIST=YES,DSECT=YES
END ADMFEXMP

7-36 z/OS V1R3.0 MVS Extended Addressability Guide

Extending the Current Size of a Hiperspace
When you create a hiperspace and specify an initial size smaller than the maximum
size, you can use DSPSERV EXTEND to increase the current size as your program
uses more storage in the hiperspace. The BLOCKS parameter specifies the amount
of storage you want to add to the current size of the hiperspace.

The system increases the hiperspace by the amount you specify, unless that
amount would cause the system to exceed one of the following:

v The hiperspace maximum size, as specified by the BLOCKS parameter on
DSPSERV CREATE when the hiperspace was created

v The installation limit for the combined total of data space and hiperspace storage
with storage key 8 -F per address space. These limits are the system default or
are set in the installation exit IEFUSI.

If one of those limits would be exceeded, the VAR parameter tells the system how
to satisfy the EXTEND request.

v VAR=YES (the variable request) tells the system to extend the hiperspace as
much as possible without exceeding the limits set by the hiperspace maximum
size or the installation limits. In other words, the system extends the hiperspace
to one of the following sizes, depending on which is smaller:

– The maximum size specified on the BLOCKS parameter

– The largest size that would still keep the combined total of data space and
hiperspace storage within the installation limit.

v VAR=NO (the default) tells the system to:

– Abend the caller, if the extended size would exceed the maximum size

– Reject the request, if the hiperspace has storage key 8 - F and the request
would exceed the installation limits.

For example, consider the hiperspace in Figure 7-2 on page 7-10, where the current
(and initial) size is 20,000 bytes and the maximum size is 100,000 bytes. If the
creating program wanted to increase the current size to 50,000 bytes by adding a
30,000 bytes to the current size, it would code the following:

DSPSERV EXTEND,STOKEN=HSSTOK,BLOCKS=HSBLCKS
.

HSDELTA EQU 30000 30000 BYTES OF SPACE
HSBLCKS DC A((HSDELTA+4095)/4096) NUMBER OF BLOCKS ADDED TO THE
* HIPERSPACE
HSSTOK DS CL8 STOKEN RETURNED FROM DSPSERV CREATE

The storage the program can use in the 100,000 byte hiperspace would then be the
first 50,000 bytes, as shown in Figure 7-12 on page 7-38:

Chapter 7. Creating and Using Hiperspaces 7-37

If you use VAR=YES when you issue the EXTEND request, use NUMBLKS to find
out the size by which the system extended the hiperspace.

Deleting a Hiperspace
When a program doesn’t need the hiperspace any more, it can delete it. A problem
state program with PSW key 8 - F can delete only the hiperspaces it owns, and
must have the PSW key that matches the storage key of the hiperspace. A
supervisor state program or a program with PSW 0 - 7 can delete a hiperspace if its
home or primary address space is the same as the owner’s home address space.

If you are not the owner of a hiperspace you are using, the hiperspace might
disappear if the owner terminates or deletes it. For example, a problem state
program can delete a hiperspace that a supervisor state program is using.

Example of Deleting a Hiperspace

The following example shows you how to delete a hiperspace:
DSPSERV DELETE,STOKEN=HSSTKN DELETE THE HS
.

HSSTKN DS CL8 HIPERSPACE STOKEN

IBM recommends that you explicitly delete a hiperspace before the owning task
terminates. This frees up resources as soon as they are no longer needed, and
avoids excess processing at termination time. However, if you don’t, MVS
automatically does it for you at termination time.

Releasing Hiperspace Storage
Your program needs to release storage when it used a hiperspace for one purpose
and wants to reuse it for another purpose, or when your program is finished using
the area. To release (that is, initialize to hexadecimal zeroes and return the
resources to the system) the virtual storage of a hiperspace, use the DSPSERV
RELEASE macro. Specify the STOKEN to identify the hiperspace and the START
and BLOCKS parameters to identify the beginning and the length of the area you
need to release.

Releasing storage in a hiperspace is subject to the following conditions. If these
conditions are not met, the system abnormally ends the caller.

Hiperspace

Current size
50,000 bytes

Maximum size
100,000 bytes

Figure 7-12. Example of Extending the Current Size of a Hiperspace

7-38 z/OS V1R3.0 MVS Extended Addressability Guide

v If the hiperspace is a shared standard type or an ESO type

– The owner must be authorized (supervisor state or PSW key 0-7).

– The caller’s PSW key must be zero or equal to the key of the hiperspace
storage the system is to release.

v If the hiperspace is a non-shared standard type and the caller is not authorized

– The owner’s home address space must be the same as the caller’s home
address space.

– The caller’s PSW key must be equal to the key of the hiperspace storage the
system is to release.

v If the hiperspace is a non-shared standard type and the caller is authorized, the
caller’s PSW key must be zero or equal to the key of the hiperspace storage the
system is to release.

After the release, the released pages do not use expanded (or auxiliary) storage
until your program references them again. When such a page is referenced again,
these pages contain hexadecimal zeroes.

Pages released through DSPSERV RELEASE do not occupy space in expanded or
auxiliary storage. The pages are available for you to use, and they contain
hexadecimal zeroes.

If your program is running disabled for I/O or external interrupts, use the
DISABLED=YES parameter on DSPSERV RELEASE. If your program is running
disabled and issues DSPSERV RELEASE without DISABLED=YES, the system
abends the program.

Using Data-in-Virtual with Standard Hiperspaces
Data-in-virtual allows you to map a large amount of data into a virtual storage area
and then deal with the portion of the data that you need. The virtual storage
provides a “window” through which you can “view” the object and make changes, if
you want. The DIV macro manages the data object, the window, and the movement
of data between the window and the object.

You can use standard hiperspaces with data-in-virtual as Table 7-6 describes:

Table 7-6. Uses of Hiperspaces and Data-in-Virtual

Non-shared
Standard
Hiperspace

Shared Standard
Hiperspace

ESO Hiperspace

Can the hiperspace map a
VSAM linear data set?

Yes Yes No

Can the hiperspace be a
data-in-virtual object?

Yes, providing the
hiperspace has not
been the target of
an ALESERV ADD

No No

The task that represents the program that issues the DIV IDENTIFY owns the
pointers and structures associated with the ID that DIV returns. Any program can
use DIV IDENTIFY. However, the system checks the authority of programs that try
to use the other DIV services for the same ID. For problem state programs with
PSW key 8 - F, data-in-virtual allows only the issuer of the DIV IDENTIFY to use
subsequent DIV services for the same ID. That means, for example, that a problem

Chapter 7. Creating and Using Hiperspaces 7-39

state program with PSW key 8 cannot issue the DIV IDENTIFY and another
problem state program with PSW key 8 issue DIV MAP for the same ID.

Problem state programs with PSW key 8 - F can use DIV MAP to:

v Map a VSAM linear data set to a window in a non-shared or shared standard
hiperspace, providing the program owns the hiperspace.

v Map an object in a non-shared hiperspace to an address space window,
providing:

– The program owns the hiperspace, and

– The program or its attaching task obtained the storage for the window
(through the STORAGE or GETMAIN macro), and

– The hiperspace has never been the target of an ALESERV ADD macro.

Data-in-virtual allows supervisor state programs or programs with PSW key 0 - 7
(called “authorized programs” in this section) to issue DIV IDENTIFY and then have
subtasks of that task use the structures. The subtasks must also be authorized.
This means that an authorized program can issue a DIV IDENTIFY and an
authorized subtask can issue the DIV MAP for that ID.

Table 7-7 shows what data-in-virtual requires of the tasks that represent the
programs that issue the DIV macros. The table does not show the IDENTIFY
service because data-in-virtual does not have restrictions on this service.

Table 7-7. Requirements for Authorized Programs using the DIV Services with Hiperspaces

ACCESS MAP SAVE UNIDENTIFY,
UNACCESS, UNMAP,
RESET

Object is a linear
data set, window
is in a non-shared
or shared
standard
hiperspace

Task that issued the
DIV IDENTIFY.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. (See Note
1.)

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the hiperspace.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the hiperspace.

Object is a
non-shared
standard
hiperspace,
window is in an
address space

Task that issued the
DIV IDENTIFY. The
task must own the
hiperspace.

Task that issued the
DIV IDENTIFY. The
task (or a supertask of
the task) that issued
the DIV IDENTIFY
must have obtained
storage for the
window. (See Note 2.)

Task that issued the
DIV IDENTIFY.

Task (or authorized
subtask of the task)
that issued the DIV
IDENTIFY. The task
does not have to own
the hiperspace.

Note 1 :

v If the program is in supervisor state or PSW key 0 - 7, any task within the caller’s primary address space can own
the hiperspace.

v If the program is APF-authorized, but not supervisor state or PSW key 0 - 7, the caller must own the hiperspace.

Note 2 :

v A task cannot map to virtual storage that a subtask obtained. However, a supertask (that is, a task higher in the
TCB chain) could have obtained the storage.

Whether the hiperspace contains the window or is the object, the data-in-virtual
service will not create a local copy of the object (that is, you cannot use the
LOCVIEW=MAP parameter on DIV ACCESS).

7-40 z/OS V1R3.0 MVS Extended Addressability Guide

The following two sections describe how your program can use data-in-virtual with
hiperspaces.

Mapping a Data-in-Virtual Object to a Hiperspace
Through data-in-virtual, a program can map a VSAM linear data set residing on
DASD to a hiperspace. The program uses the read and write operations of the
HSPSERV macro to transfer data between the address space buffer area and the
hiperspace window. It is recommended that you obtain the ALET for the hiperspace
and use the HSPALET parameter on HSPSERV to get faster data transfer to and
from expanded storage.

When a program maps a data-in-virtual object to a non-shared or shared standard
hiperspace, the system does not bring the data physically into the hiperspace; it
reads the data into the address space buffer when the program uses HSPSERV
SREAD for the area that contains the data.

Your program can map a single data-in-virtual object to several hiperspaces. Or, it
can map several data-in-virtual objects to one hiperspace.

An Example of Mapping a Data-in-Virtual Object to a Hiperspace
The following example shows how you would create a non-shared standard
hiperspace with a maximum size of one gigabyte and an initial size of 4K bytes.
Figure 7-13 shows the hiperspace with a window that begins at the origin of the
hiperspace.

Initially, the window in the hiperspace and the buffer area in the address space are
both 4K bytes. (That is, the window takes up the entire initial size of the
hiperspace.) The data-in-virtual object is a VSAM linear data set on DASD.
* CREATE A STANDARD HIPERSPACE
.
DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL,NAME=HS1NAME, X

STOKEN=HS1STOK,BLOCKS=(ONEGIG,FOURK),ORIGIN=HS1ORG
.

* MAP THE HIPERSPACE TO THE OBJECT
.
DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
DIV ACCESS,ID=OBJID,MODE=UPDATE
DIV MAP,ID=OBJID,AREA=HS1ORG,STOKEN=HS1STOK
.

* OBTAIN A 4K BUFFER AREA IN ADDRESS SPACE TO BE
* USED TO UPDATE THE DATA IN THE HIPERSPACE WINDOW

Program

DSPSERV . . .

HSPSERV SWRITE . . .

DIV IDENTIFY
DIV ACCESS
DIV MAP

. . .
. . .

. . .

HSPSERV SREAD . . .

Address Space Standard Hiperspace

HSPSERV SREAD

HSPSERV SWRITE

Permanent Object

VSAM linear
data set

window

Figure 7-13. Example of Mapping a Data-in-Virtual Object to a Hiperspace

Chapter 7. Creating and Using Hiperspaces 7-41

.
* DECLARATION STATEMENTS
.

HS1NAME DC CL8’MYHSNAME’ HIPERSPACE NAME
HS1STOK DS CL8 HIPERSPACE STOKEN
HS1ORG DS F HIPERSPACE ORIGIN
ONEGIG DC F’262144’ MAXIMUM SIZE OF 1G IN BLOCKS
FOURK DC F’1’ INITIAL SIZE OF 4K IN BLOCKS
OBJID DS CL8 DIV OBJECT ID
OBJDD DC AL1(7),CL7’MYDD ’ DIV OBJECT DDNAME

The program can read the data in the hiperspace window to a buffer area in the
address space through the HSPSERV SREAD macro. It can use the HSPALET
parameter to gain faster access to and from expanded storage. The HSPSERV
SWRITE macro can update the data and write changes back to the hiperspace. For
an example of these operations, see “Example of Creating a Standard Hiperspace
and Using It” on page 7-22.

Continuing the example, the following code saves the data in the hiperspace
window on DASD and terminates the mapping.
* SAVE THE DATA IN THE HIPERSPACE WINDOW ON DASD AND END THE MAPPING
.
DIV SAVE,ID=OBJID
DIV UNMAP,ID=OBJID,AREA=HS1ORG
DIV UNACCESS,ID=OBJID
DIV UNIDENTIFY,ID=OBJID
.

* PROGRAM FINISHES USING THE DATA IN THE HIPERSPACE
.

* DELETE THE HIPERSPACE
.
DSPSERV DELETE,STOKEN=HS1STOK

Using a Hiperspace as a Data-in-Virtual Object
Your program can identify a non-shared standard hiperspace as a temporary
data-in-virtual object, providing no program has ever issued an ALESERV ADD for
the hiperspace. With the hiperspace as the object, the window must be in an
address space. Use the hiperspace for temporary storage of data, such as
intermediate results of a computation. The movement of data between the window
in the address space and the hiperspace object is through the DIV MAP and DIV
SAVE macros. The data in the hiperspace is temporary.

Figure 7-14 on page 7-43 shows an example of a hiperspace as a data-in-virtual
object.

7-42 z/OS V1R3.0 MVS Extended Addressability Guide

When the hiperspace is a data-in-virtual object, data-in-virtual services transfer data
between the hiperspace object and the address space window. In this case, your
program cannot use the HSPSERV read and write operation.

An Example of a Hiperspace as a Data-in-Virtual Object
The program in this section creates a non-shared standard hiperspace for
temporary storage of a table of 4K bytes that the program generates and uses. The
program cannot save this table permanently.

The following code creates a non-shared standard hiperspace and identifies it as a
data-in-virtual object.
* CREATE A HIPERSPACE
.
DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL, X

NAME=HS2NAME,STOKEN=HS2STOK,BLOCKS=ONEBLOCK
.

* IDENTIFY THE HIPERSPACE AS A DATA-IN-VIRTUAL OBJECT
.
DIV IDENTIFY,ID=OBJID,TYPE=HS,STOKEN=HS2STOK
DIV ACCESS,ID=OBJID,MODE=UPDATE
DIV MAP,ID=OBJID,AREA=OBJAREA
.

HS2NAME DC CL8’MHSNAME ’ HIPERSPACE NAME
HS2STOK DS CL8 HIPERSPACE STOKEN
ONEBLOCK DS F’1’ HIPERSPACE SIZE OF 1 BLOCK
OBJID DS CL8 DIV OBJECT ID
OBJAREA DC CL8 WINDOW IN ADDRESS SPACE

When the hiperspace is a data-in-virtual object, your program does not need to
know the origin of the hiperspace. All addresses refer to offsets within the
hiperspace. Note that the example does not have the ORIGIN parameter on
DSPSERV.

After you finish making changes to the data in the address space window, you can
save the changes back to the hiperspace as follows:
* SAVE CHANGES TO THE OBJECT
.
DIV SAVE,ID=OBJID

The following macro refreshes the address space window. This means that if you
make changes in the window and want a fresh copy of the object (that is, the copy
that was saved last with the DIV SAVE macro), you would issue the following:

Program

DSPSERV . . .

DIV SAVE . . .

DIV MAP . . .

Address Space

temporary
object

Non-shared
Standard Hiperspace

window

Figure 7-14. A Standard Hiperspace as a Data-in-Virtual Object

Chapter 7. Creating and Using Hiperspaces 7-43

DIV RESET,ID=OBJID

When you finish using the hiperspace, use the DSPSERV macro to delete the
hiperspace.
* DELETE THE HIPERSPACE
.
DSPSERV DELETE,STOKEN=HS2STOK

How SRBs Use Hiperspaces
An SRB cannot own a hiperspace. Through the DSPSERV CREATE macro, a
program in supervisor state or PSW key 0 - 7 can assign ownership of a hiperspace
to a TCB. The owning TCB must reside in the SRB’s home or primary address
space.

When you use the DSPSERV CREATE macro to create the hiperspace and assign
ownership, you must identify the TCB through the TTOKEN parameter. A TTOKEN
identifies a TCB. Unlike TCB addresses, TTOKENs are unique within the IPL; the
system does not assign this same TTOKEN to any other TCB until the next IPL. If
you know the TCB address, but not the TTOKEN for the task that is to receive
ownership, use the TCBTOKEN macro. The TCBTOKEN macro accepts the TCB
address and returns a TTOKEN. You then use this TTOKEN in the DSPSERV
CREATE macro. For more information about TTOKENs, see “Obtaining the TCB
Identifier for a Task (TTOKEN)” on page 6-32.

When an SRB terminates, it can delete any hiperspaces it created. Use the
TTOKEN parameter on the DSPSERV DELETE macro to specify the address of the
TTOKEN of the hiperspace owner.

7-44 z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 8. Creating Address Spaces

This chapter is for the programmer who wants to create an address space. Perhaps
the address space is for a subsystem that has “outgrown” the address space it
shared with other programs; perhaps it will be for a set of programs that provide a
service for programs in other address spaces. Perhaps the subsystem or the
programs need to have more control over their environment.

One way for a program to create an address space, without involving an MVS
operator, is by issuing a START command through the MGCR macro. The program
must have a procedure in SYS1.PROCLIB, representing the first program that will
execute in the created address space. The program can assign the dispatching
priority for the programs that will run in the created address space. The initialization
can include cross memory macros that establish a cross memory environment for
the created address space.

An easier way to accomplish the same objectives is to issue the ASCRE macro.
The ASCRE macro creates a address space that can start after the system is
initialized and receive the services of all MVS components. It can set up cross
memory linkages so that programs in the created address space can call programs
in the creating program’s address space. It can set a dispatching priority for the
programs that run in the created address space and can specify that the address
space exist after the task that represents the creating program terminates. (For
simplicity, in this chapter the term “creating program” refers to the address space of
the program that is issuing the ASCRE macro. The term “new address space” refers
to the address space that the ASCRE macro creates.)

The system considers the new address space to be a system address space, and it
will show up as such when the operator issues a DISPLAY A command. Program
properties table (PPT) values and installation performance specification (IPS)
settings determine the attributes of the programs that execute in the new address
space.

This chapter describes how to use the ASCRE macro and two other macros that
assist in managing address spaces:

v The ASDES macro terminates an address space that was created through the
ASCRE macro.

v The ASEXT macro retrieves parameters that the creating program passes to a
program in the new address space.

For the syntax of the macros mentioned in this chapter, see one of the following:

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Using the ASCRE Macro to Create an Address Space
The ASCRE macro creates an address space. Parameters on the macro allow you
to:

v Name the address space and specify the first program that is to run in the
address space (ASNAME or STPARM parameter).

© Copyright IBM Corp. 1988, 2002 8-1

v Specify an address space initialization routine that ASCRE processing calls (INIT
parameter).

v Provide a routine to control the termination of the address space (TRMEXIT
parameter).

– Provide the termination routine with user data (UTOKEN parameter).

v Pass a parameter list from the creating program to a program in the new address
space (ASPARM or STPARM parameter).

v Assign dispatching priority for programs that run in the new address space and
request that the new address space exist after the creating program’s TCB
terminates. (ATTR parameter).

v Set up cross memory linkages between the creating address space and the new
address space (AXLIST, TKLIST, and LXLIST parameters).

v Provide an address where ASCRE will return output data (ODA parameter).

The required parameters on the ASCRE macro are ASNAME or STPARM, INIT, and
ODA. Some comments about these parameters are:

v Specify either ASNAME or STPARM.

– ASNAME specifies the address space name, which is also the name of the
procedure that identifies the first program to run in the new address space.

– STPARM specifies a parameter string. Although the system does not actually
issue a START command, the parameter string consists of START command
parameters. This parameter string must begin with the name of the address
space.

An operator can use the name of the address space on the DISPLAY A
command to display information about the address space. For the syntax of the
DISPLAY command, see z/OS MVS System Commands.

v Output data from the macro appears at the location specified on the ODA
parameter. This data includes two identifiers of the new address space: the
ASCB and the STOKEN. The STOKEN is an identifier that is unique within the
lifetime of an IPL. The format of the output data area is a 24-byte area that the
macro IHAASEO maps as follows:

Offset Length Description

X‘00’ 8 bytes The STOKEN of the new address space
X‘08’ 4 bytes The ASCB of the new address space
X‘0C’ 4 bytes Basing for IEZEAECB, the mapping macro

for the two ECBs, EAERIMWT and
EAEASWT

X‘10’ 8 bytes Reserved

For the format of IHAASEO, see the ASEO data area in z/OS MVS Data Areas,
Vol 1 (ABEP-DALT).

v Although INIT is a required parameter, you might not need to write an
initialization routine. “The Address Space Initialization Routine” on page 8-4 can
help you decide whether you need an initialization routine.

Issue the ASCRE macro in a supervisor state program that is executing in primary
or AR address space control (ASC) mode. The caller must be in enabled and
unlocked TCB mode and must not have an enabled unlocked task (EUT) functional
recovery routine (FRR) established. Issue the ASCRE macro only after system
initialization is complete.

8-2 z/OS V1R3.0 MVS Extended Addressability Guide

Planning the Characteristics of the Address Space
Before you issue the ASCRE macro, you have some planning to do and some
actions to take. For a list of the questions you have to consider before you issue
the macro, look at Table 8-1. This figure lists the questions, describes the actions
that you might take, and points you to the section in this chapter where you can find
information about the action.

Table 8-1. Planning Considerations for the New Address Space

Considerations Actions that Might Follow Reference

Which parameter identifies the procedure
in SYS1.PROCLIB that identifies the first
program to run in the new address space?

Specify either ASNAME or STPARM on
the ASCRE macro.

“Identifying a Procedure in
SYS1.PROCLIB”

Do any data sets need special DD
statements?

Supply the DD statements in the
SYS1.PROCLIB member.

“Identifying a Procedure in
SYS1.PROCLIB”

Does the address space need an
initialization routine?

Write an initialization routine and specify it
on the INIT parameter.

“The Address Space
Initialization Routine” on
page 8-4

Will the new address space be able to
provide cross memory services for
programs in other address spaces?

Code the cross memory macros in the
initialization routine.

“The New Address Space
as Service Provider” on
page 8-6

Will programs in the new address space
be able to call programs in the creating
program’s address space?

Code the TKLIST, LXLIST, and AXLIST
parameters on the ASCRE macro.

“The New Address Space
as Cross Memory User” on
page 8-7

Does the address space need a
termination routine?

Write a termination routine and code the
TRMEXIT and UTOKEN parameters.

“Providing an Address
Space Termination Routine”
on page 8-10

How will the system dispatch programs in
the new address space?

Code NONURG or HIPRI on the ATTR
parameter on the ASCRE macro.

“Establishing Attributes for
Address Spaces” on
page 8-11

Will the address space exist after the
creating task terminates?

Code PERM on the ATTR parameter on
the ASCRE macro.

“Establishing Attributes for
Address Spaces” on
page 8-11

Identifying a Procedure in SYS1.PROCLIB
The procedure in SYS1.PROCLIB specifies the first program to run in the new
address space after the optional initialization routine. You can specify the name of
this procedure either on the ASNAME or STPARM parameter.

v On the ASNAME parameter, you specify the name of the new address space,
which must be the same as the name of the procedure in SYS1.PROCLIB. (This
parameter assumes that you have the procedure in SYS1.PROCLIB.) You cannot
pass parameters to JCL through ASNAME.

v On the STPARM parameter, you specify the address of a parameter string that
consists of a two-byte length field followed by up to 124 bytes of parameter data.
The length field identifies the length of the parameter data (not including the
length field itself). The parameter data begins with the name of the new address
space, which must be the same as the name of the procedure in
SYS1.PROCLIB. The name is followed by parameters. You can pass parameters
to JCL through STPARM.

If you do not need special DD statements for data sets, you can use the common
system address space procedure IEESYSAS. In the parameter data specified by

Chapter 8. Creating Address Spaces 8-3

the STPARM parameter, specify IEESYSAS and the name of the first program to
run in the address space. The format of the parameter data is as follows:
IEESYSAS.x,PROG=y
where x is the name of the address space.

y is the name of the first program that
executes in the new address space.

Through IEESYSAS, you name the address space “x” and generate an EXEC
statement with PGM=“y”.

Example of a parameter string

To request that the system create the RMA address space and identify FIRSTPGM
as the first program to execute in the new address space, code the following:
ASCRE STPARM=STRMA,...
where STRMA is the address of the parameter string

The parameter string is coded as follows:
STRMA DS 0H

DC H’26’
DC CL26’IEESYSAS.RMA,PROG=FIRSTPGM’

where H’26’ indicates that the parameter string is 26 characters long.
IEESYSAS identifies the procedure to be used.
RMA is the name of the new address space.
FIRSTPGM is the name of the first program in the new address space.

If you have data sets that need DD statements, you will have to write your own
procedure in SYS1.PROCLIB. Identify the procedure through the parameter string
that the STPARM parameter points to. The parameter string starts with a half-word
field that tells the length of the parameter string. It is followed by parameter data.

The Address Space Initialization Routine
The initialization routine is a program that you can write to set up certain services or
data areas for the new address space. It executes in the new address space before
the procedure identified by SYS1.PROCLIB. Each initialization routine initializes an
address space according to unique requirements of the address space. For
example, the initialization routine might:

v Create and initialize control blocks

v Load executable code

v Build the cross memory linkages to allow programs in other address spaces to
call PC routines in the new address space.

The AXLIST, TKLIST, and LXLIST parameters on ASCRE set up cross memory
linkages that allow programs in the new address space to be cross memory users,
but not cross memory service providers. The initialization routine is a good place to
use the cross memory macros that allow PC routines in the new address space to
be invoked from other address spaces.

The address space that ASCRE is to create might not need initializing beyond what
the macro provides. In this case, specify the dummy routine IEFBR14 on the INIT
parameter and ignore the following description of the initialization routine.

8-4 z/OS V1R3.0 MVS Extended Addressability Guide

Writing an Initialization Routine
The system program invokes the initialization routine in supervisor state. The
routine must reside in the link pack area (PLPA, MLPA, or fixed LPA) or in a library
in the LNKLST concatenation.

On entry to the initialization routine:

v Register 1 contains the address of the parameter list, which contains the
following:

– Address of the newly created address space’s ASCB (mapped by IHAASCB)

– Address of ECBs (mapped by IEZEAECB)

v Register 13 contains the address of a standard 18-word save area.

v Register 14 contains the return address.

v Register 15 contains the address of the initialization routine.

Synchronizing the Initialization Process
The caller of ASCRE might want to wait until the new address space is initialized
(the point at which the initialization routine has finished processing and has returned
to the system program) before starting to run the first program in the new address
space. The system provides the caller with two ECBs — EAERIMWT and
EAEASWT — that it can use for communication and synchronization between the
creating program and the initialization routine. The address of these two ECBs is
contained in the data area that the ODA parameter specifies. The format of the
24-byte output area appears earlier in this chapter, and the macro IEZEAECB maps
the two ECBs within that data area. For the format of the ECBs, see the EAECB
data area in z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

Use the ECBs as follows:

v When the initialization routine gets control and completes all or part of its
processing, it posts EAERIMWT (a “cross memory” POST) to notify the caller of
ASCRE. If the initialization routine needs further communication with the creating
program, it can wait on EAEASWT. The initialization routine can pass up to three
bytes of information in the post code of the ECB.

Note: To post EAERIMWT with a cross memory post, the initialization routine
must supply the creating address space’s ASCB address on the POST
macro. The routine obtains the ASCB address from the creating program
in the following manner:

– The creating program obtains the ASCB address from PSAAOLD

– The creating program places the ASCB address in a parameter string,
and specifies the parameter string on the ASPARM parameter on the
ASCRE macro

– The initialization routine invokes the ASEXT macro to obtain the
address of a copy of the parameter string.

v If the caller needs to communicate back to the initialization routine, it posts
EAEASWT, which the initialization routine is waiting on.

Figure 8-1 on page 8-6 shows an example of a program creating a new address
space that has PC services. The caller of ASCRE does not want PC routines in the
new address space to be called from other address spaces before the cross
memory environment is initialized and able to handle those requests.

IBM recommends that your initialization routine post EAERIMWT and wait on
EAEASWT. If the initialization routine posts EAERIMWT, but does not wait on

Chapter 8. Creating Address Spaces 8-5

EAEASWT, the system frees the ECBs prematurely. This action causes the system
to abend the caller of ASCRE.

The initialization routine should use one of the following reason codes when it
returns to the system program:
v 0 — Continue with address space initialization
v 4 — Terminate the address space.

If the initialization routine is going to return to the system program with the return
code that requests that the new address space terminate, the routine should first
notify the caller of ASCRE to allow the system to continue processing. To notify the
caller:

v The initialization routine can post EAERIMWT and wait on EAEASWT.

v When the caller is posted, it can post EAEASWT to notify the initialization
routine. Control returns to the system program.

Establishing Cross Memory Linkages
There are two types of cross memory environments that you can set up between
the creating address space and the new address space. In one, programs in the
new address space provide services for other address spaces. In the second,
programs in the new address space use services provided by other address
spaces. Use this section along with Chapter 3, “Synchronous Cross Memory
Communication” on page 3-1 to set up either environment.

The New Address Space as Service Provider
Figure 8-2 on page 8-7 illustrates the environment in which the new address space
will be a service provider.

Creating program Initialization
routine

ASCRE . . .
(set up cross
memory
environment
for PC routines
in new address
space)

Wait on EAERIMWT

Post EAERIMWT
Wait on EAEASWT

PC Routine

Post EAEASWT

Return to system
program

Creating

Address Space

New

Address Space

Note that the POST macro is a "cross memory post".

Figure 8-1. Synchronization of the Address Space Creation Process

8-6 z/OS V1R3.0 MVS Extended Addressability Guide

In this figure, programs PROG1 and PROG2 in the creating address space can use
the PC services PCRT1 and PCRT2 provided by the new address space.

To set up the cross memory linkages for this environment in Figure 8-2, cross
memory macros must be issued in the new address space. The initialization routine,
which runs in the new address space, is a good place to set up this environment.
For help in writing this initialization routine, see “Writing an Initialization Routine” on
page 8-5. Figure 8-1 on page 8-6 shows how you synchronize the initialization
process so that PC routines in the new address space are not called before the
cross memory linkages are in place.

The New Address Space as Cross Memory User
Parameters on the ASCRE macro enable the creating program to establish the
second type of cross memory environment — one in which cross memory linkages
enable the new address space to use the PC services provided by the creating
program’s address space. The environment is in place as soon as ASCRE
processing is complete.

The cross memory environment that ASCRE can set up is described in Figure 8-3
on page 8-8. Programs in the new address space (PGM1 and PGM2) can call PC
routines (PCRTN1 and PCRTN2) in the creating program’s address space. (ASCRE
cannot set up the environment where programs in the creating program’s address
space can call PC routines in the new address space.)

PROG1 PCRT1

PROG2 PCRT2

PC PR

PC PR

Creating

Address Space

New

Address Space

Figure 8-2. An Example of a Cross Memory Environment

Chapter 8. Creating Address Spaces 8-7

There are three cross memory parameters on ASCRE. TKLIST and LXLIST can be
used to connect an entry table (or tables) of the creating program’s address space
to the linkage table of the new address space. AXLIST can be used to set the
values in the authority table of the new address space so that programs in the
creating program’s address space have PT and SSAR authority to the new address
space. The effect of the cross memory parameters is the same as if the new
address space issued the ATSET and ETCON macros, macros that require a
program to be in supervisor state or key 0 - 7.

The three cross memory parameters require that you provide the addresses of
three lists. The lists are:

v The AX value (or values) of the creating program’s address space

v The linkage index (LX) value (or values) of the new address space’s linkage
table

v The token (or tokens) that represents the entry table (or tables) in the creating
program’s address space.

The output of the AXRES and LXRES macros provides the input to the AXLIST and
LXLIST parameters. You must build the list that is input to the TKLIST parameter.
The following description of the parameters includes the format of the list you
provide the TKLIST parameter.

v The AXLIST parameter identifies the address of a list of authorization index (AX)
values that represent the address spaces that have access to the new address
space. The AXRES macro returned these values.

The effect of using this parameter is the same as if a program in the new
address space were to issue the ATSET macro once for every AX value in the
list.

v The LXLIST parameter identifies the address of a list of linkage index (LX)
values that represent entries in the new address space’s linkage table. The
LXRES macro returned these values. The number of linkage indexes for LXLIST
must be the same as the number of tokens for TKLIST.

The effect of using this parameter is the same as if a program in the new
address space issued the ETCON macro with the LXLIST parameter.

v The TKLIST parameter identifies the address of a list of fullword tokens — each
token represents an entry table to which the system will connect the new address

PGM1

PGM2

PC

PC

Creating program

PCRTN1

PCRTN2

ASCRE . . .

PR

PR

Creating

Address Space

New

Address Space

Figure 8-3. An Example of Cross Memory Environment Set by the ASCRE Macro

8-8 z/OS V1R3.0 MVS Extended Addressability Guide

space’s linkage table. You build this list with tokens that the ETCRE macro
returned, one token for each occurrence of the ETCRE macro. Format the list as
follows:
– The first fullword contains the number of tokens in the list
– Up to 32 fullwords follow, each containing one entry table token.

The effect of using this parameter is the same as if a program in the new
address space issued the ETCON macro with the TKLIST parameter.

If the creating address space is to be a service provider for the new address space,
the creating program (or another program in the same address space) must have
issued the following cross memory macros before it issues the ASCRE macro:

v AXRES macro, which reserves an AX value (or values)

v AXSET macro, which sets an AX

v LXRES macro, which reserves an LX value (or values)

v ETCRE macro, which creates an entry table and returns a token that identifies
the table.

On the ASCRE macro, the creating program can:

v Use the AXLIST, LXLIST, and TKLIST parameters to set up a cross memory
linkage with the new address space.

v Use the ASPARM parameter to pass the PC number of a PC routine in the
creating program’s address space.

A program in the new address space can later use the ASPARM parameter on
the ASEXT macro to obtain a PC number or numbers. See “Passing a Parameter
List to the New Address Space” on page 8-10 for more information about passing
parameters to the new address space.

Figure 8-4 on page 8-10 shows the same cross memory environment that
Figure 8-3 on page 8-8 showed. The creating address space would give the
following input to ASCRE:

v As input on AXLIST, the address of a list containing the AX value of the creating
address space. The AXRES macro returned the address.

v As input on TKLIST, the address of a list that you created. The first entry in the
list is X‘0001’, the second entry is the entry table token that the ETCRE macro
returned.

v As input on LXLIST, the address of a list containing the LX value of the new
address space’s linkage table. The LXRES macro returned the address.

The AXLIST parameter sets the authority table in the new address space so that
PC routines in the creating address space can have address space authorization to
the new address space. TKLIST and LXLIST connect the entry table in the creating
address space to the new address space’s linkage table.

Chapter 8. Creating Address Spaces 8-9

The AXLIST parameter is not always needed to set up the cross memory linkages.
If the address space to which the creating program needs access has only one AX
value and that value is 1, the system does not need to initialize entries in the new
address space’s authority table. (An AX of 1 is a fully-authorized AX value that
permits the address space to issue PT and SSAR instructions to any active address
space.) If all AX values are 1, you can omit the AXLIST parameter.

Passing a Parameter List to the New Address Space
Through the ASCRE macro, you can pass up to 254 bytes of data in a parameter
string to a program in the new address space. The ASPARM parameter identifies
the address of the parameter string. A program in the new address space can use
the ASEXT macro to obtain a copy of that parameter string. The ASEXT macro
returns the address of the copy in register 1. “Example of Creating and Deleting an
Address Space” on page 8-12 contains an example of a program in the new
address space retrieving a copy of the parameter string.

Providing an Address Space Termination Routine
You can provide a routine that receives control when the address space terminates
for reasons other than the ASDES macro. Specify the address of the routine on the
TRMEXIT parameter. The termination routine receives control in 31-bit addressing
mode, supervisor state, and in the same key as the program that issued the
ASCRE macro. The routine is an asynchronous exit that resides in the creating
program’s address space and runs under its TCB.

To identify the terminating address space to the termination routine and pass data,
use the 64-bit area provided on the UTOKEN parameter. Specify the address of this
data area on the UTOKEN parameter.

PGM1

PGM2

PC

PC

Creating program

PCRTN1

PCRTN2

AXRES
AXSET
LXRES
ETCRE

. . .
. . .
. . .
. . .

ASCRE . . .

PR

PR

Creating

Address Space

New

Address Space

Input to TKLIST

entry table

AX value authority table

linkage table

0 0 0 1
entry table token

•
•

•

•

Figure 8-4. The Cross Memory Linkages Set by the ASCRE Macro

8-10 z/OS V1R3.0 MVS Extended Addressability Guide

The UTOKEN parameter provides a 64-bit area in which the creating program can
pass data to the termination routine. Use UTOKEN to:

v Give the address space a unique name that the termination routine can use. If
your program has created more than one address space, the UTOKEN
parameter area can identify which address space is terminating.

v Pass other data to the termination routine. Data might consist of the address and
ALET of a workarea containing the name of the address space.

On entry to the routine:

v Register 1 contains the address of a copy of the 64-bit data that the UTOKEN
parameter supplies.

v Register 13 contains the address of a standard 18-word save area.

v Register 14 contains the return address.

v Register 15 contains the entry point address.

The termination routine will not get control for either of the following two reasons:

v The ASDES macro terminates the new address space.

v The creating address space terminates before the new address space
terminates.

Establishing Attributes for Address Spaces
Through the ATTR parameter, you can define some of the attributes for programs
that run in the new address space. Table 8-2 describes the options for ATTR and
identifies what definitions override those options.

Table 8-2. ATTR Options for Address Spaces

Option Description Override

NONURG The address space is to be used by
non-urgent services. The defaults for
dispatch priority as well as service class or
performance group depend on whether the
address space is privileged or not. The
dispatching priority of programs that run in
the new address space is to be low.

For an address space
created in workload
management (WLM) goal
mode, the service definitions
of the WLM policy.

For an address space
created in compatability
mode, the ICS definitions.

HIPRI The address space is to be used by
services with a high priority. The defaults for
dispatch priority as well as service class or
performance group depend on whether the
address space is privileged or not. The
dispatching priority of programs that run in
the new address space is high.

For an address space
created in workload
management (WLM) goal
mode, the service definitions
of the WLM policy.

For an address space
created in compatability
mode, the ICS definitions.

PERM The address space does not terminate
when the task that created the address
space terminates.

No override

The NONURG and HIPRI parameters set the dispatching priority for programs that
execute in the new address space. Your installation can also set the dispatching
priority through:

Chapter 8. Creating Address Spaces 8-11

v Service definitions in the WLM policy if the address space is created in WLM
goal mode. See z/OS MVS Planning: Workload Management.

v ICS definitions if the address space is created in compatability mode. See z/OS
MVS Initialization and Tuning Guide.

Do not set the dispatching priority in more than one way.

If you want the new address space to exist after the TCB of the creating program
terminates, use ATTR=(PERM).

Deleting an Address Space
Use the ASDES macro to delete an address space that was created through the
ASCRE macro. The STOKEN parameter is required on the ASDES macro. You can
obtain this value from the data output field located at the address specified on the
ODA parameter. The macro IHAASEO maps the 24-byte data area specified by
ODA. For the format of IHAASEO, see the ASEO data area in z/OS MVS Data
Areas, Vol 1 (ABEP-DALT).

Note that the termination routine that was optionally specified on the TRMEXIT
parameter on the ASCRE macro does not get control in this case.

The ASDES process is similar to what CALLRTM TYPE=MEMTERM provides. Be
aware that tasks in the abending address space cannot perform recovery and
task-level resource managers cannot get control; address space recovery routines
and resource managers can get control. Instead of using ASDES, you might use
CALLRTM TYPE=ABTERM,RETRY=NO to abend each job step task in the address
space. When all tasks in the address space have terminated, the system deletes
the address space.

Example of Creating and Deleting an Address Space
The following supervisor state, key 0 program (CREATOR) creates an address
space and a cross memory environment in which programs in the new address
space (NEWADS) can PC to the creating address space. In this example,
CREATOR builds a linkage table (LT) and a corresponding entry table (ET) that
allows programs in NEWADS to PC to the routine PCTARGET, which is loaded in
the creating address space. CREATOR passes the PC number needed to get to
PCTARGET through the ASPARM field on the ASCRE macro. A program in
NEWADS can then use the ASEXT macro to extract ASPARM. CREATOR also
builds NEWADS’s authority table (AT) so that it can PT and SSAR to NEWADS.
Note that NEWADS is the name of a procedure (PROC) that resides in
SYS1.PROCLIB. This PROC contains the JCL that identifies the first program to run
in NEWADS.
CREEXMPL CSECT
CREEXMPL AMODE 31
CREEXMPL RMODE ANY

BAKR 14,0 SAVE CALLER’S STATUS ON STACK
BASR 12,0 SET BASE REGISTER GR
USING *,12
.

.
*RESERVE AN LX

LA R4,1
ST R4,LXCOUNT NEED ONLY ONE LX
LXRES LXLIST=LX_LIST SYSTEM=YES RESERVE AN LX

.

8-12 z/OS V1R3.0 MVS Extended Addressability Guide

*RESERVE AN AX AND SET THE CURRENT ADDRESS SPACE’S AX TO IT
LA R4,1
ST R4,AXENTRIES NEED ONLY ONE AX
AXRES AXLIST=AX_LIST RESERVE AN AX
AXSET AX=AXENTRY SET HOME’S AX TO THE RESERVED AX
.

*DEFINE AN ENTRY TABLE ENTRY FOR THE ROUTINE PCTARGET
ETELIST ETDEF TYPE=INITIAL START AN ET ENTRY LIST

ETDEF TYPE=ENTRY,ROUTINE=PCTARGET,AKM=0,EK=0,EKM=0,PKM=OR, X
PC=STACKING,SASN=OLD,SSWITCH=YES,STATE=SUPERVISOR

ETDEF TYPE=FINAL COMPLETED THE ET ENTRY LIST
.

*CREATE AN ENTRY TABLE PUTTING IN THE ENTRY FOR PCTARGET
ETCRE ENTRIES=ETELIST CREATE AN ENTRY TABLE
ST R0,TKVALUE GET THE ET TOKEN FROM REG 0
LA R4,1
ST R4,TKCOUNT SET THE NUMBER OF ETS TO 1

*COMPUTE THE PC NUMBER (LX|EX) EX=0
L R4,LXVALUE
N R4,PCMASK CLEAR NON-LX VALUES

ST R4,PC_NUMBER
.
.

*NEWADS CAN USE PC_NUMBER TO GET TO PCTARGET IN CREATOR FROM NEWADS
ASCRE INIT=’IEFBR14 ’,ASNAME=’NEWADS’,TRMEXIT=TERMEXIT, X

AXLIST=AX_LIST,TKLIST=TOKENLIST,LXLIST=LX_LIST, X
ASPARM=PC_NUMBER,ODA=ODA_AREA

.
*TERMINATION ROUTINE
TERMEXIT DS 0H

USING *,15 REGISTER 15 CONTAINS ENTRY ADDRESS
SAVE (14,12),,* SAVE REGISTERS
.

*PERFORM ADDRESS SPACE TERMINATION PROCESSING
.

RETURN (14,12) RESTORE REGISTERS; RETURN TO SYSTEM
.

*DECLARATIONS
PCMASK DC ’000FFF00’ MASK TO CLEAR EX VALUE
PC_NUMBER DS F PC NUM USED TO GET TO PCTARGET
ODA_AREA DS CL24 OUTPUT DATA AREA
TOKENLIST DS CL4 LIST OF ET TOKENS
LX_LIST DS CL8 LIST OF LXS
AX_LIST DS CL4 LIST OF AXS

ORG LX_LIST
LXCOUNT DS FL4 NUMBER OF LX REQUESTED
LXVALUE DS FL4 ONE LX ENTRY

ORG AX_LIST
AXENTRIES DS FL2 NUMBER OF AX REQUESTED
AXENTRY DS FL2 ONE AX ENTRY

ORG TOKENLIST
TKCOUNT DS FL4 NUMBER OF ET TOKENS
TKVALUE DS FL4 ET TOKEN

In the following example, a supervisor state key zero program deletes an address
space that was created through the ASCRE macro. The address of the ASEO (ASE
output area), passed back from ASCRE after creating the address space, is passed
to this routine in general purpose register 1.
DESEXMPL CSECT
DESEXMPL AMODE 31
DESEXMPL RMODE ANY

BAKR 14,0 SAVE CALLER’S STATUS ON STACK
BASR 12,0 SET BASE REGISTER
USING *,12
USING ASEO,1 ESTABLISH ADDRESSABILITY TO ASEO

Chapter 8. Creating Address Spaces 8-13

.

.
* DELETE THE ADDRESS SPACE

ASDES STOKEN=ASEOSTKN
.

* DECLARES THE DSECT FOR THE ASE OUTPUT AREA PASSED BACK FROM ASCRE.
* THE IHAASEO MACRO CONTAINS THIS MAPPING

.
ASEO DSECT
ASEOSTKN DS XL8 64-BIT STOKEN OF THE NEW ASCB
ASEOASCB DS A ASCB OF NEW ADDRESS SPACE
ASEOECB DS A ECBs, BASING FOR IEZEAECB
ASEORSV1 DS XL8 RESERVED

8-14 z/OS V1R3.0 MVS Extended Addressability Guide

Chapter 9. Creating and Using Subspaces

Within an application server address space, many application programs run under a
single server program. An error in one of these application programs can cause it to
overwrite the code or data of the other application programs or of the server
program itself. Subspaces provide a means of limiting the application server
address space storage that an application program can reference, thus limiting the
damage an application program error can do within the application server address
space.

This chapter describes the concept of subspaces, when to use them, how to create
them, how to manage them, and how to delete them. It also describes
considerations for providing recovery for and diagnosing errors in programs that run
in subspaces.

What Is a Subspace?
A subspace is a specific range of storage in the private area of an address space,
designed to limit the storage a program can reference.

A program that is associated with a subspace cannot reference some of the private
area storage outside of the subspace storage range; the storage is protected from
the program. Whether a given range of private area storage is protected from a
program associated with a subspace depends on whether the storage is:
v Eligible to be assigned to a subspace (or “subspace-eligible”)
v Assigned to a subspace
v Not eligible to be assigned to a subspace.

You control these storage “states” through the IARSUBSP macro. Storage outside
of the private area is not affected by subspaces.

A program running in an address space can reference all of the storage associated
with that address space. In this chapter, a program’s ability to reference all of the
storage associated with an address space is called full address space
addressability. A program running with full address space addressability can
reference storage in any of the three states: eligible to be assigned to a subspace,
assigned to a subspace, or not eligible to be assigned to a subspace.

A program that runs in an address space that owns subspaces also has full address
space addressability, until it issues an instruction to limit the storage it can
reference. In an address space that owns subspaces, issuing the BSG instruction
controls whether a program runs with full or limited address space addressability. In
this chapter, a program running with limited addressability is said to be running in
a subspace.

A program running in a subspace can reference storage that is assigned to its own
subspace and storage that is not eligible to be assigned to a subspace. It cannot
reference storage that is eligible to be assigned to a subspace or storage that is
assigned to a subspace other than the one in which the program is running. In
other words, a subspace allows a program running in it to reference all of the
storage associated with the address space except the private area storage that is
eligible to be assigned to a subspace or assigned to another subspace.

When storage is not eligible to be assigned to a subspace and not assigned to a
subspace, it can be referenced by a program running in a subspace or a program

© Copyright IBM Corp. 1988, 2002 9-1

running with full address space addressability. This storage can be referenced by
all subspaces as well as by programs running with full address space
addressability.

An address space that owns subspaces is also called a “base space” . Figure 9-1
illustrates the concept of creating a subspace in base space ASID 23.

1. PGM1 is a program running with full address space addressability in address
space ASID 23. ASID 23 owns no subspaces, and no storage eligible to be
assigned to a subspace. PGM1 can reference all storage in the address space.

2. PGM1 makes the shaded area of storage eligible to be assigned to a subspace.
The eligible storage has not been assigned to a subspace. PGM1 can reference
the subspace-eligible storage because PGM1 is not running in a subspace.

3. PGM1 assigns part of the subspace-eligible storage to Subspace A. PGM1 can
reference the subspace storage as well as the subspace-eligible storage
because PGM1 is not running in a subspace.

4. PGM1 issues the BSG instruction, which passes control to PGM2 to run in
Subspace A. PGM2 can reference the storage that is assigned to Subspace A,

PGM1 PGM1 PGM1 PGM1

PGM2

Subspace A Subspace A

ASID 23ASID 23 ASID 23
Subspace A
of ASID 23

Assigned toAssigned to

1 2 3 4

Figure 9-1. Illustration of Address Space that Owns One Subspace

9-2 z/OS V1R3.0 MVS Extended Addressability Guide

and storage in the address space that has not been made subspace-eligible.
PGM2 cannot reference the subspace-eligible storage while PGM2 is running in
the subspace.

An address space can have many subspaces. Each application program running
simultaneously in an address space can run in its own subspace. The subspace
restricts a program running in it from referencing the storage assigned to other
subspaces. Figure 9-2 illustrates the concept of multiple subspaces by adding
another subspace to address space ASID 23.

1. Running with full address space addressability, PGM1 creates and assigns
storage to Subspace B. PGM1 can reference the entire address space,
including storage assigned to Subspaces A and B, and subspace-eligible
storage (shaded).

2. PGM2, running in Subspace A, can reference storage that is assigned to
Subspace A and storage that has not been made subspace-eligible. PGM2
cannot reference storage in Subspace B or storage that is subspace-eligible.

3. PGM3 is a program running in Subspace B. PGM3 can reference storage that is
assigned to Subspace B and storage in the address space that has not been
made subspace-eligible. PGM3 cannot reference storage that is assigned to
Subspace A, or storage that is subspace-eligible.

PGM1 PGM1PGM1

PGM2

PGM3

Subspace B
Assigned to

Subspace A
Assigned to

Subspace A
Assigned to

Subspace B
Assigned to

ASID 23
Subspace B
of ASID 23

Subspace A
of ASID 23

1 2 3

Figure 9-2. Illustration of Address Space that Owns Two Subspaces

Chapter 9. Creating and Using Subspaces 9-3

The number of subspaces per address space is limited by the amount of
unallocated private storage available in the address space, and by the amount of
storage assigned to each subspace.

A subspace is associated with only one address space and is owned by the task
that creates it. A task cannot pass addressability to its subspaces to its subtasks or
SRBs. An attached subtask or an SRB gets control with full address space
addressability.

A subspace has an access list entry (called an “entry ” in this chapter) associated
with it. After a program creates a subspace, it adds the entry to the dispatchable
unit access list (DU-AL) associated with the task the program runs under. A
program does not have to be in AR mode to use a subspace, although it can be.

A program can toggle between running in a subspace and running with full address
space addressability by issuing the BSG instruction.

Deciding Whether Your Program Should Run in a Subspace
Subspaces are beneficial in an application server address space in which numerous
applications run under a single task within the address space.

Using subspaces as described in this chapter requires few or no changes to the
application programs. See “Running a Program in a Subspace” on page 9-16 for
some considerations for a program running in a subspace.

Using subspaces does require additional code in the server program. This
requirement is explained in detail in “Steps to Manage Subspaces” on page 9-5.

Benefits of Subspaces
The use of subspaces can protect the server and application programs in an
address space. In addition, subspaces can help you to identify where in the address
space an error has occurred.

Protecting the Server Program
Using subspaces in an application server address space protects the server
program and its data. Subspaces reduce the number of failures in the server
program by protecting it from the errors of other programs in the address space.

Protecting the Application Program
Using subspaces in an application server address space also protects the
applications, similar to the way programs are protected by running in separate
address spaces. By preventing applications from overwriting each other’s code and
data, subspaces increase the reliability of these applications.

Providing Diagnosis
An IPCS diagnostic report and trace functions can help you to identify where in the
address space an error has occurred.

An ABEND dump can help you to identify that an error resulted from a prohibited
storage reference. When requested by a program running in a subspace, an
ABEND dump contains only the storage that the program is allowed to reference.

9-4 z/OS V1R3.0 MVS Extended Addressability Guide

Limitations of Subspaces
Subspaces have the following limitations:

v They do not provide protection against deliberate attempts to overwrite code.

v To ensure that subspace storage is protected, the system abnormally ends a
program that:

– Attempts to reference storage to which it does not have addressability

– Provides incorrect information on the IARSUBSP macro.

Therefore, you might need to code additional recovery routines for your
programs.

v An unauthorized application program running in a subspace cannot add more
storage to the subspace. If an application program requires more subspace
storage, the server program must obtain subspace-eligible storage for the
application. This is explained in detail in “Requesting Additional Storage while
Running in a Subspace” on page 9-17.

System Storage Requirements
One factor that might influence your decision to use subspaces is the amount of
virtual and central storage that the system requires to manage them. This storage
overhead can affect system performance.

The system allocates storage for its own use from subpool 255 when a program:
v Makes storage eligible to be assigned to a subspace
v Creates a subspace
v Assigns more than 2 segments of storage below 16 megabytes to a subspace.

The system deallocates its storage when the program deletes the subspace or
makes the storage ineligible to be assigned to a subspace.

The amount of storage that the system requires for its own use depends on
whether the subspace storage is above or below 16 megabytes. The system
requires more storage to manage subspaces below 16 megabytes.

Use the following guidelines to plan for the system’s storage requirements:

Table 9-1. System Storage Requirements When Managing Subspaces

The System
Uses:

For Each:

8192 bytes Address space in which a program issues IARSUBSP IDENTIFY

1024 bytes Segment below 16 megabytes specified on IARSUBSP IDENTIFY

10376 bytes Subspace created

1024 bytes Segment below 16 megabytes specified on IARSUBSP ASSIGN, after
the first two such segments

Steps to Manage Subspaces
The steps to create, branch to, and delete subspaces, and the macros and
instructions associated with each step, are outlined in Table 9-2 on page 9-6. The
table also includes the program authorization requirements. Each step is explained
in detail on the topic indicated.

Chapter 9. Creating and Using Subspaces 9-5

Table 9-2. Steps for Creating, Using, and Deleting Subspaces

Step Minimum
Authorization

Performed by: Described
on page

Determine if the subspace is
available on your system

Problem state and
any PSW key

Testing a bit in the
CVT

9-8

Obtain storage for subspaces Using the
GETMAIN or
STORAGE macro

9-8

Make the storage eligible to be
assigned to subspaces

Supervisor state
or PSW key 0 - 7

Using the
IARSUBSP macro
with IDENTIFY

9-10

Create the subspaces Using the
IARSUBSP macro
with CREATE

9-12

Add the subspace entries to the
DU-AL

Problem state and
any PSW key

Using the
ALESERV macro
with ADD

9-13

Assign the identified storage to the
subspace

Using the
IARSUBSP macro
with ASSIGN

9-14

Branch and run an application
program in a subspace

Using the BSG
instruction

9-15

Disassociate the storage from the
subspace

Using the
IARSUBSP macro
with UNASSIGN

9-17

Remove the entry from the DU-AL Using the
ALESERV macro
with DELETE

9-18

Delete the subspace Supervisor state
or PSW key 0 - 7

Using the
IARSUBSP macro
with DELETE

9-18

Make the storage ineligible to be
assigned to a subspace.

Using the
IARSUBSP macro
with UNIDENTIFY

9-18

Release the storage Problem state and
any PSW key

Using the
FREEMAIN or
STORAGE
macros

9-19

Updating the Application Server To Use Subspaces
Most application servers consist of at least two types of programs:

v Application programs , which perform the work

v A server program , which manages the application programs and the address
space.

You can choose to manage subspaces in either of the following ways, or with a
combination of the two:

v Create a number of subspaces prior to receiving requests for application program
services

v Create one subspace at a time, in response to receiving a request for application
program services.

9-6 z/OS V1R3.0 MVS Extended Addressability Guide

The method that you choose depends on whether your installation is more
concerned with storage constraints or performance of the application server.

Managing Subspaces when Performance Is a Priority
It is most efficient to obtain storage for and create the number of subspaces needed
for all application programs as part of application server initialization. Then, as a
request for an application program’s services is received, the server program
assigns eligible storage to a subspace, runs the application program in the
subspace, and disassociates the eligible storage from the subspace. As part of
application server termination, the application server deletes the subspaces and
makes the storage ineligible to be assigned to a subspace.

Managing subspaces in this way is less costly than other designs in terms of
performance. The IDENTIFY and CREATE functions use more instructions than the
ASSIGN and UNASSIGN functions. By reserving a quantity of subspace-eligible
storage and creating subspaces that are reused for multiple invocations of the
application programs, the server program manages subspaces efficiently.

This design could cause storage constraints. When storage is subspace-eligible but
not assigned to a subspace, a program running in a subspace cannot reference it.
Subspace-eligible storage cannot be released until the server program makes it
ineligible to be assigned to a subspace. Furthermore, a program cannot pass
ownership of subspace-eligible storage to a subtask.

If storage constraints in the application server address space are a concern at your
installation, you might want to consider the alternate design described in “Managing
Subspaces when Storage Is a Priority”.

Managing Subspaces when Storage Is a Priority
A server program with storage constraints can manage the subspaces by
performing all steps to create and delete subspaces each time an application
program runs. (See Table 9-2 on page 9-6 for an overview of the steps.) Managing
subspaces in this way can reduce storage contention in the system, but is much
more costly in terms of server performance.

Creating a Single Subspace
The following is a simple illustration of how a server program can manage a single
subspace.

STORAGE OBTAIN Obtain storage in application server address space
Receive storage to be used for subspaces

IARSUBSP IDENTIFY Make storage ranges eligible for subspaces
Specify storage that was previously obtained

IARSUBSP CREATE Create the subspace
Receive STOKEN

ALESERV ADD Add the subspace to the DU-AL, specifying STOKEN
Receive ALET

IARSUBSP ASSIGN Assign the range of storage that a program running in the
subspace can reference
Specify STOKEN, storage portion

Chapter 9. Creating and Using Subspaces 9-7

BSG Branch to subspace
Specify ALET

Run application program in subspace

BSG Branch back to full address space addressability
Specify ALET 0

IARSUBSP UNASSIGN Disassociate the range of storage from the subspace
Specify STOKEN, storage range

ALESERV DELETE Remove entry from the access list
Specify ALET

IARSUBSP DELETE Delete the subspace
Specify STOKEN

IARSUBSP UNIDENTIFY Make storage ranges ineligible for subspace usage
Specify storage that was previously specified on
IARSUBSP IDENTIFY

STORAGE RELEASE Release storage in application server address space
Specify storage

Determining Whether Subspaces Are Available on Your System
Before attempting to use subspaces, your program should ensure that the subspace
is installed on your system. To test for the subspace, include the CVT in your
program and check the CVTSUBSP bit. When this bit is on, the subspace is
available on your system.

Obtaining Storage for Subspaces
After determining that the subspace is available, the server program must obtain
storage for the subspaces. As explained in “Steps to Manage Subspaces” on
page 9-5, it is most efficient to obtain in one request enough storage for all
subspaces that the application programs will require. You will need the following
information about the application programs running in the address space to
estimate the size of your storage request:

v The average number of application programs in the application server address
space during peak processing periods

v The average amount of storage required for an application program and its data

v The amount of “surplus” storage you want available to be used by application
programs during unusually heavy workloads or for large application programs.

This information might be available from a performance monitoring program. If not,
you might want to estimate the storage required and fine-tune the storage request
later, after testing your estimate.

In addition, be sure that you request enough storage to allow you to align the
storage on a megabyte boundary. To align the storage correctly, you might have to
request a good deal more storage than you plan to use.

Storage Attributes
Obtain your subspace storage by selecting a storage subpool with the storage
attributes that subspaces require. The chapter on virtual storage in z/OS MVS
Programming: Authorized Assembler Services Guide contains a table listing all

9-8 z/OS V1R3.0 MVS Extended Addressability Guide

subpools and the storage attributes associated with them. Table 9-3 shows the
required storage attributes for subspaces.

Table 9-3. Storage Attributes Required for Subspaces

Storage
Attribute

Requirement Comments

Location Private Subspace storage must be in high private or low
private storage.

Fetch Protection None Subspace storage can be fetch-protected, but
fetch-protection is not required.

Type Pageable Subspace storage must be pageable.

Owner Task or job step Subspace storage must be owned by the task
creating the subspace, or a task higher in the task
hierarchy.

Storage key None Subspace storage has no storage key requirements.

Backing Virtual Storage for a Subspace: Subspaces can be backed by real
storage either above or below 16 megabytes. Backing the subspace below 16
megabytes is more costly in the event of a page fault. Back a subspace with
storage above 16 megabytes unless an old application, which must run below 16
megabytes, will run in the subspace.

Requesting Subspace Storage
Use the STORAGE macro to request storage for your subspaces. You can also use
the GETMAIN macro, but STORAGE is easier to use and has fewer restrictions and
requirements than GETMAIN.

When the STORAGE macro successfully obtains storage, it returns the length and
address of the storage. You supply the length and address of the obtained storage
in a range list when you invoke the IARSUBSP macro to make the storage eligible
to be assigned to a subspace. (Making storage eligible is described in detail in
“Making a Range of Storage Eligible to Be Assigned to a Subspace” on page 9-10.)

Aligning Virtual Storage for a Subspace: After you obtain the storage for the
subspaces, you must align the storage on a megabyte boundary before specifying it
on an IDENTIFY request. See “Example of Managing Subspaces” on page 9-20,
which illustrates how to align the storage you’ve obtained.

Creating the Range List: The range list is a storage area containing up to 16
entries. Each entry consists of 2 words as follows:

First word The starting virtual address of the storage range that the system is
to make eligible to be assigned to a subspace. The starting address
must be on a megabyte boundary. A megabyte is 1,048,576 bytes
long.

Second word The number of pages (4096 bytes), beginning at the address in the
first word, that are to be made eligible to be assigned to a
subspace. The number must be a multiple of 256.

The range list must be addressable in the caller’s primary address space. Each
range must reside in a single subpool.

You might not be able to obtain all of the subspace storage required by your
application programs in a single STORAGE macro request. If you cannot, add an

Chapter 9. Creating and Using Subspaces 9-9

entry to the range list for each storage request. The STORAGE macro returns the
number of bytes of storage obtained in GPR 0. The second word of the range list
entry requires the number of pages obtained. To convert the number of bytes into
the number pages, divide the number of bytes returned in GPR 0 by 4096. Store
the quotient into the second word of the range list entry. Store the contents of GPR
1 into the first word of the range list entry.

Making a Range of Storage Eligible to Be Assigned to a Subspace
After the server program has obtained storage, it must make the storage eligible to
be assigned to a subspace. To do this, invoke the IARSUBSP macro with the
IDENTIFY parameter, specifying the storage range.

A program that is running in a subspace cannot reference a range of storage once
the storage range is eligible to be assigned to a subspace. If it attempts to do so, it
will abnormally end with system completion code X'0C4'. In addition, the server
program cannot pass ownership of this subspace-eligible storage to a subtask. If
the server program attempts to do so by invoking the ATTACH macro with either the
GSPL or GSPV parameter, the system will abnormally end the server program with
system completion code X'12A'.

A server program that attempts to release the storage before the storage has been
made ineligible to be assigned to a subspace will abnormally end with system
completion code X'A05', X'A0A', or X'A78'. To make the storage ineligible to be
assigned to a subspace, specify the storage range on the IARSUBSP macro with
the UNIDENTIFY parameter.

Considerations When Making Storage Eligible to Be Assigned to
a Subspace
When updating the server to make storage eligible to be assigned to a subspace,
consider the task under which the server is running, and the restrictions of
programs running in subspaces.

Task Hierarchy Restrictions: Your server program should run under the lowest
task in the task hierarchy that will need to make storage eligible to be assigned to a
subspace.

The first time a server program successfully issues the IARSUBSP IDENTIFY
request in an address space, the system identifies the task under which that
program runs as the lowest task in the task hierarchy that can make subsequent
IARSUBSP IDENTIFY requests. Additionally, that task or a higher task must own
the storage that is being made eligible to be assigned to a subspace.

Effect on Existing Subspaces: A program running in a subspace cannot
reference storage once it has been made eligible to be assigned to a subspace. If
an address space already owns subspaces and makes additional storage eligible to
be assigned to a subspace, the programs running in the existing subspaces lose
the ability to reference the storage that has been made subspace-eligible. The
effect is that a program running in a subspace becomes unable to reference
storage that it could reference prior to the IDENTIFY request.

Coding the RANGLIST Parameter
Together with the NUMRANGE parameter, the RANGLIST parameter allows you to
make multiple storage ranges eligible to be assigned to subspaces. The RANGLIST
parameter specifies a fullword that contains an address of a list of ranges, or
specifies a register that contains the address of the fullword pointer to the range list

9-10 z/OS V1R3.0 MVS Extended Addressability Guide

that you created when you allocated the storage. The number of entries in the
range list is specified on the NUMRANGE parameter.

The following examples illustrate the range list and how to use a register or a
fullword field as pointers to it.

Requirements of the Range List for an IDENTIFY or UNIDENTIFY
Request
Each range list entry representing storage for an IDENTIFY or UNIDENTIFY
request must:

v Specify a number of pages that is a multiple of 256

v Specify an address that begins on a segment boundary

v Specify storage that previously has been obtained

v Specify storage that is pageable and private

v Specify storage that is owned by the task that previously invoked IARSUBSP
IDENTIFY, or by a task that is higher in the task hierarchy.

For the requirements of the range list for an ASSIGN or UNASSIGN request, see
“Requirements of the Range List for an ASSIGN or UNASSIGN Request” on
page 9-14.

Start addr

Start addr

Start addr

amount

amount

amount

Start addr

Start addr

Start addr

amount

amount

amount

RANGADDR
(fullword)

8 bytes

RANGADDR
(fullword)

Register 5

8 bytes

NUMRANGE=3,RANGLIST=(5)

NUMRANGE=3,RANGLIST=RANGADDR

The range list contains 3 entries and RANGLIST uses a fullword pointer:

The range list contains 3 entries and RANGLIST uses register notation:

Figure 9-3. Illustration of the Range List

Chapter 9. Creating and Using Subspaces 9-11

System Processing of Range List Errors in IARSUBSP IDENTIFY
Request
If an entry in the range list does not conform to one or more of these requirements,
the system processes the range list entries up to the entry in error. The system
does not process the incorrect range list entry or any range list entries that follow it.
The system abnormally ends the IARSUBSP IDENTIFY request with system
completion code X'3C6', and puts the address of the incorrect range list entry in
GPR 2. It puts the address of the storage that incurred the error into GPR 3.

Creating the Subspaces
The server program can create subspaces by issuing the IARSUBSP macro with
the CREATE parameter. IARSUBSP CREATE allows you to name the subspaces
yourself, have the system generate the subspace names, or have the system
generate subspace names only when the name you provide is not unique within the
address space. See the IARSUBSP macro description in z/OS MVS Programming:
Authorized Assembler Services Reference ENF-IXG for more information about
naming subspaces.

Be aware that, if you choose to let the system generate the subspace names for
you, you must still supply three characters for the system to use.

Saving Subspace STOKENs
When it creates a subspace, the system returns an STOKEN for the subspace.
Save the subspace STOKEN returned to your program. You must provide the
STOKEN when adding an access list entry for the subspace. A program cannot run
in a subspace until the server program uses the STOKEN to add an access list
entry to its task’s DU-AL.

You also must supply the subspace STOKEN to associate and disassociate storage
with a subspace, and to delete the subspace after your application program has
run.

Range List

Start addr amount

01400000 00000256

Start addr amount

GPR 2

01402000

GPR 3

Storage
01400000

01401000

01402000

01403000

014FD000

.

.

.

.

.

.

.

.

Figure 9-4. Illustration of GPR Contents in Event of Range List Error

9-12 z/OS V1R3.0 MVS Extended Addressability Guide

Establishing Addressability to a Subspace
Before a program can run in a subspace, the server program must add a subspace
entry to the DU-AL of the task that the program is running under. To do this, code
the ALESERV macro with the ADD parameter, supplying the STOKEN that the
system returned from the IARSUBSP CREATE request.

The requirements for the ALESERV request are:

v The subspace entry must be added as a public entry. If you attempt to add it as
a private entry, you will receive a return code indicating an error from the
ALESERV macro.

v The subspace entry must be added to the DU-AL. If you attempt to add a
subspace entry to the PASN-AL, you’ll receive a return code indicating an error
from the ALESERV macro.

The ALESERV macro returns an ALET. Do not modify this ALET. Use the ALET as
an operand on the BSG instruction to switch to a subspace.

Copying the DU-AL to a Subtask or SRB
Although a program can request that the system provide a subtask or SRB with a
copy of its DU-AL, the system cannot copy subspace entries to the new DU-AL.
The copy of the DU-AL will contain all of the access list entries except those
representing subspaces.

Searching For and Extracting a Subspace Entry
Once a subspace entry has been added to a DU-AL, a program can use the
SEARCH parameter of ALESERV to obtain the subspace ALET, and the EXTRACT
parameter of ALESERV to obtain the subspace STOKEN.

A program cannot invoke ALESERV EXTRACT and supply ALET 1.

Using Special ALETs
The meaning of special ALETs 0 and 1 differs depending on whether the ALET is
supplied for access register translation or specified on the BSG instruction.

A program running in AR ASC mode in a subspace or with full address space
addressability can use special ALETs 0, 1, and 2 to access its primary, secondary,
and home address spaces. This concept is described in detail in “Special ALET
Values” on page 5-12.

Likewise, a program running in a subspace or with full address space addressability
can supply these ALETs on an ALESERV EXTRACT request to obtain the STOKEN
for the address space they require. To obtain the STOKEN for the full address
space, invoke ALESERV with the EXTRACTH parameter.

However, when specified on a BSG instruction, ALETs 0 and 1 have different
meanings. Specifying BSG with ALET 0 causes a program to run with full address
space addressability. Specifying BSG with ALET 1 causes a program to run in the
subspace that most recently had control. If a program is running in a subspace
when it issues BSG with ALET 1, the program will continue to run in that subspace.

If a program has never run in a subspace and it attempts to return to a subspace
by issuing the BSG instruction with ALET 1, the program will abnormally end with
system completion code X'0D3'.

Chapter 9. Creating and Using Subspaces 9-13

Assigning Storage to the Subspaces
Before a program can reference subspace storage, the program must associate an
eligible range of storage with the subspace. Storage is eligible to be assigned to a
subspace once it has been specified on an IARSUBSP IDENTIFY request. Storage
that has been assigned to a subspace can be referenced only by a program
running in that subspace, or by a program running with full address space
addressability.

Use the IARSUBSP macro with the ASSIGN parameter to associate a subspace
with its storage. Either an authorized or unauthorized program can perform this
step. Specify a storage range from the storage you obtained, and the STOKEN
returned when you created the subspace.

One way to design your server program is to create a loop in the server program.
For each request to the server program for application program services, the
program loop:

1. Assigns a storage range to a subspace

2. Issues the BSG instruction to switch to subspace addressability

3. Passes control to the application program

4. Receives control after the application program finishes its processing

5. Issues the BSG instruction to switch to full address space addressability

6. Disassociates the storage from the subspace (described in more detail in
“Disassociating Storage from the Subspaces” on page 9-17).

This design ensures that there is a subspace available for the application program
to run in. It also allows eligible storage to be reassigned to different subspaces as
needed, while preventing application programs from referencing the storage as it is
being reassigned.

Requirements of the Range List for an ASSIGN or UNASSIGN
Request
The requirements for a range list entry for an ASSIGN or UNASSIGN request differ
depending on whether the storage the entry represents is above or below 16
megabytes.

For storage above 16 megabytes, a range list entry must:

v Specify a number of pages that is a multiple of 256

v Specify an address that begins on a segment boundary

v Specify storage that previously has been obtained

v Specify storage that has been made eligible to be assigned to a subspace by a
previous IARSUBSP IDENTIFY request.

A range list entry representing storage below 16 megabytes for an ASSIGN or
UNASSIGN request must:

v Specify a number of pages

v Specify an address that begins on a page boundary

v Specify storage that has previously been obtained

v Specify storage that has been made eligible to be assigned to a subspace by a
previous IARSUBSP IDENTIFY request.

9-14 z/OS V1R3.0 MVS Extended Addressability Guide

System Processing of Range List Errors in IARSUBSP ASSIGN
Request
If the storage range you specify is already assigned to a subspace, the system
does not process that request but will continue to process the subsequent valid
range list entries. The system places return code 4 in GPR 0.

If an entry in the range list does not conform to one or more of the range list
requirements, the system processes the range list entries up to the entry in error.
The system does not process the incorrect range list entry or any range list entries
that follow it. The system abnormally ends the IARSUBSP ASSIGN request with
system completion code X'3C6', and puts the address of the incorrect range list
entry in GPR 2. It puts the address of the storage range into GPR 3.

Branching to a Subspace
A server program branches to a subspace when it issues the BSG instruction with
the ALET that corresponds to the desired subspace, and its primary and home
address spaces are the same. The BSG instruction uses an ALET-qualified branch
address to switch to the subspace. Use the ALET returned by ALESERV ADD.

The server program can use the BSG instruction to pass control to an application
program which will run in the subspace. Alternately, the server program itself can
begin running in the subspace. See Principles of Operation for details about coding
the BSG instruction.

After issuing the BSG instruction, a program can reference the subspace while
running in primary, secondary, or AR modes. The program runs in a subspace until
it switches to:

v Another subspace or full address space addressability, by issuing another BSG
instruction

v Another address space, by issuing a space-switching instruction.

Using Cross Memory Mode with Subspaces
If the program changes its primary or secondary address space to be other than the
home address space, it loses the ability to address the subspace. It can regain
addressability to the subspace by setting the changed address space back to the
home address space.

Example of Changing Primary and Secondary Address Spaces With
Subspaces: An application program is running with PASN=SASN=HASN in
address space X'23', and has not issued the BSG instruction.

Here are some hypothetical actions and the results of those actions:

Program Action Result

The program issues a BSG to subspace TP1 The program is running with
PASN=SASN=HASN=X'23', and has
addressability to subspace TP1 through its
primary and secondary address spaces.

The program issues a PC (Program Call)
instruction that changes the PASN to X'14'

The program is running with PASN=X'14',
SASN=HASN=X'23', and has addressability to
subspace TP1 through its secondary address
space.

Chapter 9. Creating and Using Subspaces 9-15

Program Action Result

The program issues a SSAR (Set Secondary
ASN) instruction that changes SASN to ASID
X'18'

The program is running with PASN=X'14',
SASN=X'18', HASN=X'23', and does not have
addressability to TP1 through either its
primary or secondary address spaces.

The program issues a SSAR instruction that
changes SASN back to ASID X'23'

The program is running with PASN=X'14',
SASN=HASN=X'23', and has addressability to
subspace TP1 through its secondary address
space.

The program issues a PT (Program Transfer)
instruction that changes PASN back to ASID
X'23'

The program is now running with
PASN=SASN=HASN=X'23' and has
addressability to subspace TP1 through its
primary and secondary address spaces.

The program issues a BSG instruction using
ALET 0

The program is running with
PASN=SASN=HASN=X'23' and has full
address space addressability.

Running a Program in a Subspace
A program running in a subspace will abnormally end if it attempts to reference:

v Storage that is assigned to another subspace

v Storage that is eligible to be assigned to another subspace, but is not assigned.

Aside from these restrictions, a program running in a subspace can reference the
same storage that a program running with full address space addressability can
reference.

The following topics describe additional considerations for a program running in a
subspace.

Returning to Full Address Space Addressability
At any time during processing, a program can return to full address space
addressability. If the primary address space is other than the home address space,
the program must first change its primary address space to its home address
space. Then, the program can issue the BSG instruction using ALET 0 to return to
full address space addressability. Running with full address space addressability
allows the program to reference the address space private storage without regard to
subspaces.

Preserving the Path Across Subspaces
The BSG instruction allows you to return to the subspace in which the program last
ran by issuing BSG with ALET 1. However, BSG cannot reconstruct a program’s
path across multiple subspaces. It can return the program only to the last subspace
it was in. The program is responsible for preserving the subspace trail, if it needs
that information.

Using Checkpoint/Restart With Subspaces
A program cannot request a checkpoint while running in a subspace. A program
running with full address space addressability can request a checkpoint if it has no
subspace entries on its DU-AL, or if it ensures that the system will ignore the
subspace entries by either:

v Deleting all DU-AL entries that were not created specifying CHKPT=IGNORE on
the ALESERV request, including subspace entries.

v Ensuring that the access list entries were added by specifying CHKPT=IGNORE
on the ALESERV request.

9-16 z/OS V1R3.0 MVS Extended Addressability Guide

A task that either deletes the entries or adds them specifying CHKPT=IGNORE is
responsible for rebuilding the subspaces and reestablishing the connections to
them. If a restart occurs after a successful checkpoint, the system does not rebuild
the subspaces or establish addressability to them.

Requesting Additional Storage while Running in a Subspace
If a program running in a subspace needs additional storage, you must determine
whether that storage must be protected by the subspace. If the storage does not
need subspace protection, the program can obtain it by using the STORAGE macro
and requesting storage that is not eligible to be assigned to a subspace.

A program running in the subspace might use storage that is not protected by a
subspace to share data with a program running in another subspace, or to provide
access to parameter lists, data areas, or exits needed by an MVS service.

If the additional storage must be protected by the subspace, the application
program must have the server program obtain storage on its behalf. The server
program can use the surplus storage that it obtained (described in “Obtaining
Storage for Subspaces” on page 9-8). If none is available, the server program:

1. Makes a request for more storage meeting the requirements described in
“Storage Attributes” on page 9-8

2. Makes the storage range eligible to be assigned to a subspace by specifying
the range on IARSUBSP IDENTIFY

3. Assigns the storage to the subspace by specifying the storage range and the
subspace STOKEN on the IARSUBSP ASSIGN request.

After doing so, the server program can pass control back to the application
program, which can then use the additional storage.

Keep in mind that the server program should preserve the starting address and
number of pages of any additional storage that it obtains, to disassociate the
storage and make it ineligible to be assigned to a subspace when the application
program has finished processing, and to release the storage.

Using MVS Services in a Subspace
A program that uses MVS services while running in a subspace must have storage
access to the service. For example, if a program loads a copy of an MVS service, it
must ensure that the load module is loaded into either:

v Storage that is assigned to the subspace

v Storage that can be referenced by all subspaces (storage that has not been
specified on an IARSUBSP IDENTIFY request).

Additionally, the program must ensure that the MVS service has access to all
required parameter lists, data areas, and program exits, by keeping them in storage
that is assigned to the subspace or storage that can be referenced by all
subspaces. If the program cannot provide access to both of these storage areas, it
might have to switch to full address space addressability to use the MVS service.

Finally, the program must ensure that all necessary storage is available to an MVS
service across asynchronous operations.

Disassociating Storage from the Subspaces
After the application program has run, the server program can disassociate the
subspace-eligible storage from the subspace to which it is assigned. This allows the
server program to assign eligible storage to another subspace when it receives a

Chapter 9. Creating and Using Subspaces 9-17

new request for application program services. Disassociating the storage also
prevents an application program from referencing the storage before it is
reassigned.

Use the IARSUBSP macro with the UNASSIGN parameter to disassociate
subspace-eligible storage from the subspace to which it is assigned.

System Processing of Range List Errors in IARSUBSP
UNASSIGN Request
The storage ranges supplied in the range list for an IARSUBSP UNASSIGN request
must meet the requirements described in “Requirements of the Range List for an
ASSIGN or UNASSIGN Request” on page 9-14.

If the storage range you specify is not assigned to the subspace you specify, the
system does not process that request but will continue to process the subsequent
valid range list entries. The system places return code 4 in GPR 0.

If an entry in the range list does not conform to one or more of the range list
requirements, the system processes the range list entries up to the entry in error.
The system does not process the incorrect range list entry or any range list entries
that follow it. The system abnormally ends the IARSUBSP UNASSIGN request with
system completion code X'3C6', and puts the address of the incorrect range list
entry in GPR 2. It puts the address of the storage range into GPR 3. See Figure 9-4
on page 9-12 for an illustration of a range list error.

Removing the Subspace Entry from the DU-AL
Prior to deleting the subspace, the server program should remove the subspace’s
associated entry from the DU-AL. Do this by invoking the ALESERV macro with the
DELETE parameter and the subspace STOKEN.

If the task that created the subspace ends before the subspace entry has been
deleted, the system will remove the entry from the DU-AL.

Deleting the Subspace
An authorized program can delete a subspace by invoking the IARSUBSP macro
with the DELETE parameter and supplying the subspace STOKEN that the system
returned when the program created the subspace. It is most efficient to delete all
subspaces at once.

The program that deletes a subspace must be running under the same task as the
program that created the subspace. The program will abnormally end if it attempts
to delete a subspace that it, or any other program, is running in.

The system disassociates the storage from the subspace before deleting the
subspace, if the program has not already done so.

Deleting a subspace does not remove its associated entry from the DU-AL. See
“Removing the Subspace Entry from the DU-AL” for information about deleting the
entry.

Making Storage Ineligible to Be Assigned to a Subspace
All storage that has been made eligible to be assigned to a subspace must be
specified on an IARSUBSP UNIDENTIFY request before it can be released. The
server program must invoke the IARSUBSP macro with the UNIDENTIFY
parameter, and specify the storage range in the range list.

9-18 z/OS V1R3.0 MVS Extended Addressability Guide

The system disassociates the storage from the subspace before making the storage
ineligible to be assigned to a subspace, if the server program has not already done
so.

System Processing of Range List Errors in IARSUBSP
UNIDENTIFY Request
The storage ranges supplied in the range list for an IARSUBSP UNIDENTIFY
request must meet the requirements described in “Requirements of the Range List
for an IDENTIFY or UNIDENTIFY Request” on page 9-11. In addition, the storage
range must be eligible to be assigned to a subspace.

If an entry in the range list does not conform to one or more of these requirements,
the system processes the range list entries up to the entry in error. The system
does not process the incorrect range list entry or any range list entries that follow it.
The system abnormally ends the IARSUBSP UNIDENTIFY request, with system
completion code X'3C6', and puts the address of the incorrect range list entry in
GPR 2. It puts the address of the storage range into GPR 3.

Releasing Storage
A program cannot release the storage that was obtained for subspaces until it
issues the IARSUBSP macro with the UNIDENTIFY parameter. If it attempts to free
the storage before issuing IARSUBSP UNIDENTIFY, the program will abnormally
end with system completion code A05, A0A, or A78. See z/OS MVS System Codes
for information about those codes.

Use the STORAGE macro with the RELEASE parameter to release the storage that
you obtained for the subspaces. You can also use the FREEMAIN macro, but
STORAGE has fewer requirements and restrictions and is easier to use.

Free the storage by specifying on the SP parameter the subpools you obtained for
your subspace storage.

Chapter 9. Creating and Using Subspaces 9-19

Example of Managing Subspaces
* OBTAIN THE STORAGE FROM A PAGEABLE SUBPOOL

STORAGE OBTAIN,LENGTH=4096*(256+256),BNDRY=PAGE,SP=0,COND=YES
ST 1,STORSTRT
LTR 15,15 IF NOT SUCCESSFUL (0)
BNZ NOSTOR GO TO ERROR PROCESSING

*
* MAKE IT SEGMENT ALIGNED
*

L 9,ROUNDIT
L 2,ONEMEG
L 10,STORSTRT
ALR 10,2
NR 10,9
ST 10,STORSEGA NEW SEGMENT-ALIGNED BOUNDARY
L 1,STORSEGA
ST 1,RPTR1 PUT IT IN THE RANGE LIST

* ***
* CREATE 5 SUBSPACES
* ***

LA 5,1 INIT LOOP COUNTER
LA 9,STOKEN1 START WITH FIRST STOKEN

* IN ARRAY
LOOP1 DS 0H

IARSUBSP CREATE,NAME=SSNAME,STOKEN=(9), *
GENNAME=COND,OUTNAME=ONAME

LTR 15,15 IF NOT SUCCESSFUL (0)
BNZ NOCREATE GO TO ERROR PROCESSING
LA 4,1 LOOP INCREMENT IS 1
ALR 5,4 BUMP UP LOOP COUNTER
LA 10,8 ARRAY INCREMENT IS 8
ALR 9,10 BUMP UP ARRAY INDEX
LA 4,5
CR 5,4 CHECK HOW MANY SO FAR
BNH LOOP1 IF NOT 5 YET, REPEAT

* **
* ADD THE SUBSPACE ENTRY TO THE WORKUNIT ACCESS LIST
* ***

ALESERV ADD,STOKEN=STOKEN1,ALET=SSALET,AL=WORKUNIT
* ***
* MAKE THE STORAGE SUBSPACE-ELIGIBLE
* ***

IARSUBSP IDENTIFY,RANGLIST=RANGPTR,NUMRANGE=NUMRANG
* ***
* ASSIGN THE STORAGE TO THE SUBSPACE
* ***

IARSUBSP ASSIGN,STOKEN=STOKEN1,RANGLIST=RANGPTR
* ***
* BRANCH TO THE SUBSPACE
* ***

L 2,=A(X’80000000’+NEXT1)
BSG 0,2

* ***
* RUN PROGRAM IN THE SUBSPACE
* ***
* RETURN TO THE BASE SPACE (FULL ADDRESS SPACE ADDRESSABILITY)
* ***
NEXT1 DS 0H

L 0,=A(X’80000000’+NEXT2)
BSG 0,0

* ***
* DISASSOCIATE THE STORAGE (NUMRANGE DEFAULTS TO 1 WHICH IS WHAT
* WE HAVE)
* ***
NEXT2 DS 0H

9-20 z/OS V1R3.0 MVS Extended Addressability Guide

IARSUBSP UNASSIGN,STOKEN=STOKEN1,RANGLIST=RANGPTR
* ***
* MAKE THE STORAGE INELIGIBLE TO BE ASSIGNED TO A SUBSPACE
* ***

IARSUBSP UNIDENTIFY,RANGLIST=RANGPTR
* ***
* DELETE THE SUBSPACE
* ***
*

IARSUBSP DELETE,STOKEN=STOKEN1
*
* ***
* SUBSPACE CREATE FAILED - RELEASE THE STORAGE
* ***
NOCREATE DS 0H ERROR EXIT POINT
* ***
* RELEASE THE STORAGE - USE THE ORIGINAL ADDRESS STORSTRT
* ***

STORAGE RELEASE,ADDR=STORSTRT,LENGTH=4096*(256+256)
* ***
* STORAGE OBTAIN FAILED - UNDO WHATEVER STEPS HAD BEEN SUCCESSFUL
* PRIOR TO THE STORAGE OBTAIN
* ***
NOSTOR DS 0H Error exit point

.

.

.

.

.

.

* ***
* DECLARES
* ***
ONEMEG DC F’1048576’ ONE MEGABYTE
ROUNDIT DC X’FFF00000’ ROUND IT TO A SEGMENT ADDRESS
SSNAME DC CL8’SSPACE1 ’ SUBSPACE NAME
ONAME DS CL8 GENERATED NAME IF NEEDED
SSSTOKEN DS 0CL40
STOKEN1 DS CL8
STOKEN2 DS CL8
STOKEN3 DS CL8
STOKEN4 DS CL8
STOKEN5 DS CL8
SSALET DS 5CL4
STORSTRT DS 1F ADDRESS FOR OBTAIN/RELEASE
STORSEGA DS 1F SEGMENT-ALIGNED ADDRESS
*
* RANGE LIST MAPPING
*
RLIST DS 0CL8
RPTR1 DS F
NUMBLKS DC F’256’
*
RANGPTR DC A(RLIST)
NUMRANG DC F’1’

Planning for Recovery in a Subspace Environment
As described in “Limitations of Subspaces” on page 9-5, the system abnormally
ends programs that specify incorrect parameters on the IARSUBSP macro. While
this helps to preserve the integrity of subspaces, the chances that your server
program will abnormally end are increased.

Chapter 9. Creating and Using Subspaces 9-21

You can plan for this by designing recovery routines that intercede when the system
abnormally ends your server program. System code X'3C6' in z/OS MVS System
Codes describes the IARSUBSP macro errors that cause your program to
abnormally end.

To set up a recovery routine for any program, you must understand the topics
presented in the recovery chapter in z/OS MVS Programming: Authorized
Assembler Services Guide. To design recovery for programs running in subspaces,
you need additional information about the recovery routine’s subspace
environment . The subspace environment is simply whether the routine is running
with full address space addressability or in a subspace, and, if it is running in a
subspace, which one? Like a mainline program, a recovery or retry routine can use
the BSG instruction to:

v Change subspaces, by specifying the ALET of the desired subspace

v Run with full address space addressability, by specifying ALET 0

v Return to the last subspace to have control, by specifying ALET 1.

(See “Using Special ALETs” on page 9-13 for a more information on using ALETs 0
and 1 with the BSG instruction.) Given that, consider these questions:

v In what environment does the recovery routine receive control?

v Does a recovery routine that changes its environment need to ensure that the
environment is reset if the recovery routine abnormally ends?

v In what environment does a retry routine receive control?

These questions are answered in the following topics.

Planning for SPIE and ESPIE Routines
SPIE and ESPIE exit routines and data areas should reside in storage that can be
referenced by all subspaces. This ensures that a SPIE or ESPIE routine has
addressability to all required data areas, regardless of the subspace environment in
which the program interruption occurs.

Because SPIE and ESPIE routines cannot percolate, they always receive control in
the subspace environment that was in effect when the error occurred in the
mainline program. SPIE and ESPIE routines are explained in z/OS MVS
Programming: Authorized Assembler Services Guide.

Planning for ESTAE-Type Recovery Routines and FRRs
The remaining information on planning for recovery applies to both ESTAE-type
recovery routines and FRRs, unless otherwise noted.

Subspace Environment at Entry to Recovery Routines
A recovery routine runs in the subspace environment that the previous routine was
running in when it encountered an error or percolated.

After an error in the mainline program, the first recovery routine to receive control
runs in the subspace that the mainline was running in at the time of error. If the
mainline routine was running in Subspace A, the recovery routine gets control in
Subspace A. If the mainline routine was running with full address space
addressability, the recovery routine gets control with full address space
addressability.

If the recovery routine percolates, the next recovery routine receives control in the
environment in effect when the previous recovery routine percolated. For example,

9-22 z/OS V1R3.0 MVS Extended Addressability Guide

if the first recovery routine received control in Subspace A, issued the BSG
instruction to change to full address space addressability, then percolated, the next
recovery routine will receive control with full address space addressability.

Resetting a Changed Subspace Environment after a Recovery
Routine Error
A recovery routine that abnormally ends might cause the next recovery routine to
get control in the wrong subspace. The SETRP macro with SSRESET=YES
requests that the system reset the environment when an ESTAE-type recovery
routine abnormally ends. SSRESET cannot be used by FRRs. and has no effect
when a recovery routine percolates.

When the current recovery routine temporarily changes subspaces, specify
SSRESET=YES to protect the next recovery routine. SSRESET=YES ensures that,
if the current recovery routine abnormally ends before it returns to the correct
subspace, the next recovery routine will get control in the subspace in which the
current routine received control. This allows you to ensure that the next recovery
routine receives control in the correct subspace, regardless of the subspace the
current routine runs in when it abnormally ends.

When the current recovery routine processes successfully and returns to the correct
subspace, SSRESET=YES protection is no longer necessary. The next recovery
routine is no longer in danger of receiving control in the wrong subspace if the
current recovery routine abnormally ends. At this point, you can specify
SSRESET=NO in the current recovery routine. SSRESET=NO negates the earlier
specification of SSRESET=YES. If the current recovery routine abnormally ends
after specifying SSRESET=NO, the next recovery routine gets control as described
in “Subspace Environment at Entry to Recovery Routines” on page 9-22. See z/OS
MVS Programming: Authorized Assembler Services Reference SET-WTO for a
description of the SETRP macro and the SSRESET parameter.

Passing Information to a Recovery Routine in a Subspace
When the system supplies an SDWA, the system provides it in storage that can be
referenced by all subspaces. A recovery routine running in a subspace does not
have to do anything extra to reference the SDWA.

If the mainline program passes a user parameter area to the recovery routine, the
mainline routine should create the user parameter area in storage that can be
referenced by all subspaces. This ensures that, if the recovery routine changes the
environment in which it is running, it will still be able to reference the user
parameter area.

Subspace Environment On Entry to Retry Routine
A retry routine gets control in the subspace environment in which the last recovery
routine returned to RTM. If the last recovery routine was running in a different
subspace environment from the mainline program, the recovery routine should issue
the BSG instruction to ensure that the mainline resumes processing in the correct
subspace environment.

Diagnosing Errors in a Subspace Environment
The following diagnostic information is available for programs that use subspaces.

Diagnosing 0C4 ABENDs
A program running in a subspace cannot reference storage that is subspace-eligible
but not assigned to the program’s subspace. If a program attempts to reference this

Chapter 9. Creating and Using Subspaces 9-23

storage, the program will incur either a page translation exception or a segment
translation exception, and the program will abnormally end with an X'0C4' system
completion code. This ABEND occurs when the subspace-eligible storage is not
assigned to the program’s subspace at the time of error.

Using IPCS to Diagnose Program Errors in a Subspace
The following IPCS subcommands can help you diagnose errors in an address
space that owns subspaces:

v The RSMDATA subcommand allows you to produce a subspace report.

v The STATUS subcommand with the FAILDATA option includes the subspace
environment at the time of error.

v The NAME subcommand displays the subspace name and address space
identifier when the STOKEN specified is a subspace STOKEN.

v The SUMMARY subcommand with the FORMAT keyword generates a report that
indicates whether a program was running in a subspace when the error occurred.

v The VERBEXIT subcommand with the LOGDATA verb name formats LOGREC
buffer records that indicate whether a program was running in a subspace when
the error occurred and, if so, include the subspace name and STOKEN.

See z/OS MVS IPCS Commands for details.

RSM Component Trace
RSM component trace provides options that allow you to trace subspace services.
See z/OS MVS Diagnosis: Tools and Service Aids for details.

Requesting a Dump
If a program requests an SVC dump while running in a subspace, the system
dumps the entire address space.

If a program requests an ABEND dump while running in a subspace (by specifying
a SYSABEND, SYSMDUMP, or SYSUDUMP DD statement in the job step), the
system dumps only the storage that the program can reference while running in a
subspace.

9-24 z/OS V1R3.0 MVS Extended Addressability Guide

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 A-1

A-2 z/OS V1R3.0 MVS Extended Addressability Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 B-1

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book is intended to help the customer to code programs with needs that
extend beyond the boundaries of the address space in which the programs are
dispatched. This book documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v CICS
v DB2
v Hiperspace
v IBM
v IBMLink
v MVS
v MVS/SP
v MVS/XA
v OS/390
v Resource Link
v System/370
v S/390
v VTAM
v zSeries
v z/Architecture
v z/OS

Other company, product, and service names may be trademarks or service marks
of others.

B-2 z/OS V1R3.0 MVS Extended Addressability Guide

Glossary

This glossary includes definitions of terms used in
this book.

If you do not find the term you are looking for,
view IBM Glossary of Computing Terms, located
at:

www.ibm.com/ibm/terminology

Access list. A table in which each entry specifies an
address space, data space, or hiperspace that a
program can reference.

Address space. A range of two gigabytes of
contiguous virtual storage addresses that the system
creates for a user. It contains user data and programs,
as well as system data and programs, some of which
are common to all address spaces. Instructions execute
in an address space.

Address/data space. Address space or data space

ALET (access list entry token). A token that indexes
into an access list. When a program is in AR mode and
the ALET is in an AR with the corresponding GPR being
used as a base register, the ALET indicates the address
space or data space that the system is to reference. An
ALET can also identify a hiperspace.

ALET-qualified address. An 8-byte address that
consists of an ALET (identifying a space) and an
address (identifying an offset within the space). The
ALET-qualified address might be contained in storage
with the ALET in the first 4 bytes and the address in the
last 4 bytes. Or, it might be contained in an AR/GPR
pair.

AR (access register) mode. The ASC mode in which
the system uses both the GPR (used as the base
register) and the corresponding AR to resolve an
address in an address/data space.

AR/GPR. Access register and general purpose register
pair.

ASC (address space control) mode. The mode
(determined by the PSW) that tells the system where to
find the data it is to reference. Three ASC modes are
AR, secondary, and primary.

Authority table. Consists of entries that define the PT
and SSAR authority that other address spaces have
with respect to the cross memory user’s address space.
Entries also define the EAX authority that a PC routine
has with respect to an address space. Each entry in the
table corresponds to a particular authorization index.

Authorization index (AX). Indicates the authority of a
program that’s running in one address space to issue

the PT or SSAR instruction with another address space
as the target of those instructions. A program runs with
the AX of the current primary address space.

Auxiliary storage. Data storage that is not central or
expanded storage, typically, storage on direct access
devices (DASDs).

BAKR (branch and stack) instruction. Branches to a
location and adds an entry to the linkage stack.

bar. A virtual line that marks the 2-gigabyte address in
a 64-bit address space. It separates virtual storage
below the 2-gigabyte address (called “below the bar”)
from virtual storage above the 2-gigabyte line (called
“above the bar”).

Basic PC instruction. Transfers control to another
program, the PC routine. The basic PC requires the
service provider to save and restore the user’s
environment. The PC routine can be in the same
address space as the program that issues the PC
instruction, or in a different address space.

Central storage. Program-addressable storage from
which instructions and other data can be loaded directly
into registers for subsequent execution or processing.

Control parameters. Parameters that a macro service
routine uses.

CPYA (copy access) instruction. Copies the contents
of one AR into another AR.

Cross memory mode. Cross memory mode exists
when at least one of the following conditions are true:
v The current primary address space (PASN) and the

current home address space (HASN) are different
address spaces.

v The current secondary address space (SASN) and
the current home address space (HASN) are different
address spaces.

v The ASC mode is secondary.

Data space. A range of up to two gigabytes of
contiguous virtual storage addresses that a program can
directly manipulate through assembler instructions.
Unlike an address space, a data space can hold only
data; it does not contain common areas or system data
or programs. Instructions do not execute in a data
space.

Dispatchable unit. A TCB or SRB, sometimes called
work unit.

DU-AL (dispatchable unit access list). Access list
associated with the dispatchable unit (or work unit).

EAR (extract access) instruction. Copies the
contents of an AR into a GPR.

© Copyright IBM Corp. 1988, 2002 C-1

http://www.ibm.com/ibm/terminology

EAX (extended authorization index). An identifier
that the system uses to determine the authority of a
program to add entries to or delete entries from its
access lists and use ARs to access data in address
spaces.

Entry table. A table in which each entry defines the
attributes of a PC routine.

EPAR (extract primary ASN) instruction. Place the
primary ASID into a GPR.

EREG (extract stacked registers) instruction. Loads
ARs and GPRs from the current linkage stack entry.

ESAR (extract secondary ASN) instruction. Place
the secondary ASID into a GPR.

ESO (expanded storage only) hiperspace. A
hiperspace that is backed by expanded storage only. It
is a high-speed buffer area or “cache” for storing data.

ESTA (extract stacked state) instruction. Obtains
non-register information from the current linkage stack
entry.

Expanded storage. High-speed high-volume
electronic storage. The operating system transfers this
storage to and from central storage in 4K byte blocks.

GPR. General purpose register

Guard area. An area of a memory object that a
program cannot access. The guard area is optionally
established when the IARV64 macro creates a memory
object; a guard area can be changed into an accessible
area through the IARV64 macro.

Hiperspace. A range of up to two gigabytes of
contiguous virtual storage addresses that a program can
use as a buffer. Like a data space, a hiperspace can
hold user data; it does not contain common areas or
system data. Instructions do not execute in a
hiperspace. Unlike an address space or a data space,
data is not directly addressable. To manipulate data in a
hiperspace, you bring the data into the address space in
4K byte blocks.

Home address space. The address space in which
the TCB or the SRB is initially dispatched. A TCB or
SRB represents a dispatchable work unit. When MVS
initially dispatches a work unit the primary, secondary,
and home address spaces are the same address space.

IAC (insert address space control) instruction.
Indicates in a GPR which ASC mode is in effect.

LAE (load address extended) instruction. Load a
specified ALET and address into an AR/GPR pair.

LAM (load access multiple) instruction. Load the
contents of one or more ARs from a specified location.

Linkage index (LX). Provides an index into the cross
memory user’s linkage table.

Linkage stack. An area that the system provides for a
BAKR or a stacking PC to save status information. It
can be either a normal linkage stack or a recovery
linkage stack.

Linkage table. A table in which each entry points to
an entry table. It provides the connection between a PC
number and an entry table.

MEMLIMIT. The limit on the use of virtual storage
above the bar. This limit can be set through JCL EXEC
statements, JCL JOB statements, SMF commands, the
SMFPRMxx parmlib member, and the IEFUSI
installation exit. The system default is 0M which means
no virtual storage above the bar is allowed.

Memory object. An area of virtual storage that a
program creates using the IARV64 macro; it resides
above the 2-gigabyte address in a 64-bit address
space.

MSTA (modify stacked state) instruction. Copies the
contents of an even/odd GPR pair to the modifiable
area of the current linkage stack entry.

MVCK (move with key) instruction. Moves data
between storage areas that have different protection
keys.

MVCP (move to primary) instruction. Moves data
from the secondary address space to the primary
address space.

MVCS (move to secondary) instruction. Moves data
from the primary address space to the secondary
address space.

Non-shared standard hiperspace. A standard
hiperspace that can generally be shared only with
programs that are dispatched in the owner’s home
address space. However, a program not dispatched in
the owner’s home address space and using an ALET,
can access this non-shared standard hiperspace
through the owner’s home PASN-AL.

Normal linkage stack. Saves program status
information. The system uses this linkage stack until
entries are no longer available. It then presents a
″stack-full″ program interruption.

PR (program return) instruction. Returns control to a
program that issued a stacking PC or BAKR instruction.

Primary address space. The address space whose
segment table is used to fetch instructions in primary,
secondary, and AR ASC modes. A program in primary
mode fetches data from the primary address space.

Primary ASC mode. The ASC mode in which the
system uses the GPRs, but not the ARs, to resolve an

C-2 z/OS V1R3.0 MVS Extended Addressability Guide

address in an address space. In primary ASC mode, the
system fetches instructions and data from the primary
address space.

Processor storage. The combination of central and
expanded storage.

Program call (PC) instruction. Transfers control to
another program, the PC routine. The PC instruction is
either a stacking or a basic PC instruction. The PC
routine can be in the same address space as the
program that issues the PC instruction, or, in the case
of a space-switching PC instruction, a different address
space.

Program call (PC) routine. A program that receives
control as the result of a PC instruction’s executing and
performs a service for the caller.

PT (program transfer) instruction. Returns control to
a program that issued a basic PC instruction.

Recovery linkage stack. The linkage stack that is
available to the program’s recovery routines after the
“stack full” interruption occurs on a normal linkage
stack.

SAC (set address space control) instruction.
Explicitly sets either the primary ASC mode, secondary
ASC mode, AR ASC mode, or home ASC mode.

SAR (set access register) instruction. Place the
contents of a GPR into an AR.

Secondary address space. The address space
whose segment table the system uses to access data in
secondary ASC mode.

Secondary ASC mode. The ASC mode in which the
system fetches instructions from the primary address
space and data from the secondary address space.

Shared standard hiperspace. A standard hiperspace
that can be shared with programs that are dispatched in
any address space.

Space-switching PC instruction. A PC instruction
that transfers control to a PC routine that is not in the
same address space as the program that issues the PC
instruction.

SSAR (set secondary ASN). Sets the secondary
address space to a specified address space.

Stacking PC instruction. Transfers control to another
program, the PC routine. The stacking PC uses the
linkage stack for storing the caller’s status. It provides
more options and more automatic function than the
basic PC instruction. The PC routine can be in the
same address space as the program that issues the PC
instruction, or a different address space.

Stack-full program interruption. A program
interruption that occurs when a program tries to add an
entry to a linkage stack and no more entries are
available.

STAM (store access register multiple) instruction.
Store the contents of one or more ARs beginning at a
specified location.

Standard hiperspace. A hiperspace that is backed by
expanded storage, and auxiliary storage, if necessary.
Through a buffer area in an address space, your
program can “scroll” through a standard hiperspace.

STOKEN (space token). An eight-byte identifier of an
address space, data space, or hiperspace. It is similar
to an address space identifier (ASID or ASN), with two
important differences: the system does not reuse the
STOKEN value within an IPL, and data spaces do not
have ASIDs. Macros that support AR mode callers often
use STOKENs instead of ASIDs to identify address/data
spaces.

TTOKEN. A 16-byte identifier of a TCB. Unlike a TCB
address, a TTOKEN is unique within an IPL.

User parameters. Parameters that a macro service
routine passes from the user of the macro to another
routine.

Work unit. A TCB or SRB, sometimes called a
dispatchable unit.

X-macro. Some macro services offer two macros, one
for callers in primary mode and one for callers in AR
mode. The name of the macro for the AR mode caller is
the same as the name of the macro for primary mode
callers, except the macro that supports the AR mode
caller ends with an “X”. The “X” version of the macro is
called an “X-macro”.

64-bit address space. The address space that is
supported by an architecture that provides 64-bit
addresses.

Glossary C-3

C-4 z/OS V1R3.0 MVS Extended Addressability Guide

Index

Numerics
0C4 system completion code

with subspaces 9-23
0D3 system completion code

with subspaces 9-13
12A system completion code

with subspaces 9-10
3C6 system completion code

IARSUBSP ASSIGN request 9-15
IARSUBSP IDENTIFY request 9-12
IARSUBSP UNASSIGN request 9-18
IARSUBSP UNIDENTIFY request 9-19
recovering from 9-22

64-bit address space 4-1
using assembler instructions 4-5

binary operations 4-6
what is 4-1

64-bit addressing mode (AMODE) 4-8
modal instructions 4-9

AMODE 24 4-9
AMODE 31 4-9
AMODE 64 4-9

non-modal instructions 4-8
64-bit instructions

pitfalls to avoid 4-10

A
A05 system completion code

with subspaces 9-19
A0A system completion code

with subspaces 9-19
A78 system completion code

with subspaces 9-19
ABEND macro used to dump data space storage 6-35
access data in a data space 6-4

rules for 6-4, 6-6
access list 5-15

adding entry for address space 5-17
adding entry for data space 5-16
adding entry for hiperspace 7-19
definition 5-3
deleting hiperspace entry 7-20
description 5-7
illustration 6-2
private entries 5-11
public entries 5-11
relationship with work unit 5-9
size 5-8, 5-9
type 5-7, 5-11, 6-2

access list entry
adding 5-7, 5-15
deleting 5-24, 7-20
example 5-16
limit 6-35
type 5-11

access list entry token
See ALET (access list entry token)

ACCESS parameter on ALESERV macro 5-16, 5-26
accessibility A-1
add an entry for primary address space to DU-AL 5-22
add an entry to an access list

description 5-15
example 5-16, 5-17, 5-19, 7-19

add an entry to the DU-AL
rules for data spaces 6-6

add entry to an access list
rules for data spaces 6-6

add entry to the DU-AL
example 5-19, 6-21
illustration 5-19

add entry to the PASN-AL
example 5-20
illustration 5-20
rules for data spaces 6-6

ADD parameter on ALESERV macro 5-14
ADDPASN parameter on ALESERV macro 5-15
address space

comparison with data space and hiperspace 1-1
creating through ASCRE 8-1
creating through ASCRE macro 9-1

example 8-12
deleting through ASDES macro 8-12
establishing access through ARs 5-7
establishing attributes for 8-11
getting EAX-authority 5-25
naming 8-1
procedures for obtaining EAX-authority 5-30
terminating with ASDES macro 8-1

address space authorization for PC routines 3-11
purpose 3-11

address space creation
initialization routine 8-4
synchronization of process 8-6
through ASCRE 8-1

address/data space
definition 5-2

addressability 9-1, 9-13
changing 9-15

with subspaces 9-15
establishing 9-13

to subspace 9-13
full address space 9-1

addressability through DU-AL
example 5-19
illustration 5-19

addressability through PASN-AL
example 5-20
illustration 5-20

addressing mode
compared to ASC mode 5-3

AKM (authorized key mask) 3-1
purpose 3-10
relationship to PKM 3-10

© Copyright IBM Corp. 1988, 2002 X-1

AL parameter on ALESERV macro 5-16
ALCOPY parameter on ATTACHX macro 6-24
ALESERV macro

ADD request
example 5-16, 5-19, 5-20, 5-33, 6-21, 6-25,

6-27, 6-32, 6-33, 7-19
process for SCOPE=COMMON data space 6-22
use 5-14, 5-15, 5-18

ADDPASN request
use 5-15, 5-18, 5-22

DELETE request
example 5-24, 5-33, 6-22, 6-28, 6-33, 6-34, 7-20
use 5-14

EXTRACT request
use 5-15, 5-18

EXTRACTH request
use 5-15, 5-18

SEARCH request
use 5-15, 5-16

summary of functions 5-14
ALET (access list entry token) 9-13

checking validity 5-31
definition 5-3
definition of special 5-12
example of loading a zero into an AR 5-13
example of loading into AR 5-6
for a hiperspace 7-18
for home address space 5-12, 5-23
for primary address space 5-12
for secondary address space 5-12
illustration 5-3, 6-2
illustration of special 5-12
obtaining 5-18
obtaining for hiperspace 7-19
passing 5-18, 7-19
passing across address spaces 5-22
reuse 5-25, 6-24
rules for passing 5-18
special 5-7, 5-12, 9-13
with a value of 0 5-12
with a value of 1 5-12
with a value of 2 5-12

ALET parameter on ALESERV macro 5-16
ALET-qualified address

definition 5-5
used in macro parameter list 5-35

AR (access register)
advantage 5-1
compared with cross memory 5-1
contents 5-3
description 5-1
example of loading ALET 5-6
example of loading an ALET of zero 5-13
rules for coding 5-5
used for EAX-authority 5-25
using for data reference 5-1
why a program would use 5-1, 5-2

AR information
formatting and displaying 5-37

AR instruction
summary 5-6

AR mode
coding instructions 5-5
compared to primary mode 5-2, 5-4
definition 5-2
description 1-4, 5-2
importance of comma 5-5
importance of the contents of ARs 5-13
issuing macros 5-35
passing parameters 5-37
rules for coding 5-5
switching 5-3

AR mode data movement
compared to cross memory data movement 5-29

ARCHECK subcommand
format and display AR information 5-37

ARR (associated recovery routine)
identifying 3-32

ASC (address space control) mode
description 5-2

ASC mode
compared to addressing mode 5-3
compared to cross memory mode 5-3
description 1-4
switching 5-3

ASCRE macro
cross memory environment 8-9
establishing attributes 8-11
establishing cross memory environment 8-6, 8-7
establishing termination routine 8-10
use 8-1

ASDES macro
description 8-1
example 8-13
use 8-12

ASEXT macro
description 8-1
use 8-9

ASID (address space identifier)
compared with an STOKEN 5-7
illustration of reuse 3-39
reuse of 3-38

assembler instructions 2-5
changing modifiable area of linkage stack entry 2-5
manipulating entries on linkage stack 2-2
modify ARs 5-6
used for cross memory 3-4

assign
ownership of data space 6-3

associated recovery routine
See ARR

asynchronous communication
definition 1-3

asynchronous exit routine
associated DU-AL 5-35
associated EAX 5-35
associated PASN-AL 5-35

AT (authority table) 3-1
illustration 8-6
PT authority 3-11
purpose 3-11
relationship to AX 3-11

X-2 z/OS V1R3.0 MVS Extended Addressability Guide

AT (authority table) (continued)
SSAR authority 3-11

ATSET macro 3-1
example 3-23, 3-26
purpose 3-3
used for obtaining EAX 5-30
used to obtain EAX-authority 5-31

attach a subtask and pass a DU-AL 6-24
ATTACH macro

used to pass DU-AL to subtask 6-24
ATTACHX macro

example of passing DU-AL to subtask 6-25
used to pass DU-AL to subtask 6-24

ATTR parameter on ASCRE 8-11
authority

to set up addressability to address spaces 5-15
to set up addressability to data spaces 5-15

authorization index
See AX (authorization index)

authorization key mask
See AKM (authorized key mask)

AX (authorization index) 3-1
compared with an EAX 5-28, 5-29
illustration 5-29, 8-6
reuse of 3-40
value 3-11

AXEXT macro 3-1
purpose 3-3

AXFRE macro 3-1
example 3-26
purpose 3-3

AXLIST parameter on ASCRE macro 8-8
AXRES macro 3-1

example 3-19
purpose 3-3
used to get EAX-authority 5-30

AXSET macro 3-1
example 3-1

resetting an AX 3-26, 3-28
setting an AX 3-20, 3-27

purpose 3-4

B
BAKR instruction

adding entry to linkage stack 2-3
description 2-3
example 2-3, 6-32, 6-33

base space 9-2
basic decision

data space or hiperspace 1-6
basic PC 3-1

available to all address spaces 3-15
available to selected address spaces 3-16
overview 3-5
PC routine execution 3-6

BLOCKS parameter on DSPSERV macro 6-8, 6-29,
7-7, 7-9, 7-38

BSG instruction 9-15
with special ALETs 9-13

C
callable cell pool service 6-17

for data space 6-17
CALLERKEY parameter on DSPSERV macro 6-8, 7-7
CALLRTM macro

terminating address space created by ASCRE
macro 8-12

CASTOUT parameter on DSPSERV macro 7-12
change

EAX value 5-31
characteristics of access lists 5-8
check

ALET of caller 5-31
EAX-authority of caller 5-31
global bit for AR mode 5-33

check validity of ALET
example 5-32

checkpoint/restart
managing data space storage 6-14
managing hiperspace storage 7-2

checkpointing
with subspaces 9-16

CHKEAX parameter on ALESERV macro 5-15, 5-26
choose the name of a data space 6-9
comma

careful use of in AR mode 5-5
common area data space

See SCOPE=COMMON data space
comparison of a PASN-AL and a DU-AL 5-9
comparison of EAX and AX 5-28
contents of an AR 5-3
contents of linkage stack 2-4
CPYA instruction

description 5-6
create

address space 8-1
data space 6-1
ESO hiperspace 7-12
hiperspace 7-1
standard hiperspace 7-11

cross memory
example of setting up 8-2
setting up environment through ASCRE macro 8-2

cross memory communication 3-1
accessing data from a PC routine 3-7
accounting considerations 3-13
advantage 3-1
assembler instructions used for 3-4
basic PC linkage, overview 3-5
considerations before using 3-13
entry table 3-9
environment 3-9
environmental considerations 3-13
establishing communication 3-14
EX (entry table index) 3-10
example 3-18, 3-28
execution time consideration 3-14
introduction 3-1
linkage conventions 3-32
linkage table 3-9
LX (linkage index) 3-9

Index X-3

cross memory communication (continued)
macros used for 3-3
overview of cross memory communication 3-5
PC linkage 3-5, 3-28
PC number 3-10
PC routine 3-1

characteristics 3-28
execution 3-5
invocation 3-5
overview 3-5
requirements 3-32

PKM (PSW key mask) 3-10
recovery considerations 3-41
requirements 3-14
requirements for PC routines 3-32
resource management considerations 3-13
restrictions 3-14
services for all address spaces 3-15
services for selected address spaces 3-16
stacking PC linkage, overview 3-5
summary 3-8
terminology 3-2
when to use 3-1

cross memory data movement
compared to AR mode data movement 5-29

cross memory environment
example 8-7
illustration 8-6

cross memory mode
compared to AR mode 5-1
compared to ASC mode 5-3

cross memory recommendations 3-1
accessing data from a PC routine 3-1
general register 13 initialization 3-35
loading PC routines 3-40
macro sequence 3-15
obtaining and releasing resources 3-37
type of PC to use 3-9
use of ETDEF macro 3-21
use of IHAETD mapping macro 3-21
use of PCLINK macro 3-33

current entry in linkage stack
definition 2-3

current size of data space 6-10
current size of hiperspace 7-9
CVT (communications vector table) 9-8

testing 9-8
for subspace 9-8

D
data movement

in AR mode 5-29
data reference

using ARs 5-1
data space 6-12

choosing the name 6-9
compared to address space 1-1
compared with hiperspace 1-8
containing DREF storage 6-13
creating 6-1, 6-8

data space (continued)
data manipulation 1-8
data manipulation illustration 1-8
decision to use 1-6
definition 6-1
deleting 6-3, 6-20
description 1-6
dumps of storage 6-35
efficient use 6-35
establishing access through ARs 5-7
example 1-7, 1-10
example of creating 5-16
example of moving data in and out 6-15
extending current size 6-4, 6-19
identifying the origin 6-11
managing storage 6-14
mapping data-in-virtual object into 1-6, 6-26
physical backing 1-9
protecting storage 6-12
PSW key 6-12
referencing data 6-2
releasing storage 6-29
restoring after a checkpoint/restart operation 6-14
saving before a checkpoint/restart operation 6-14
shared between two address spaces 5-22
storage available for 6-15
summary of rules 6-6
unmapping data-in-virtual object into 6-28
use 1-7
use by SRB 6-31
use of physical storage 1-9

data space and hiperspace
comparing 7-5

data space or hiperspace
which one should you use 1-9

data space storage
dumping 6-35
extending 6-6
managing 6-14
physical backing 1-9
protecting 6-12
releasing 6-6, 6-29
rules for releasing 6-29
serializing use 6-15

data-in-virtual
mapping a hiperspace object to an address space

window 7-42
mapping into a data space 1-5, 1-6, 6-26
mapping into a hiperspace 1-6, 7-39, 7-41

data-only space
definition 1-1
illustration 1-1

delete
access list entry 5-24, 7-20

example 5-24, 6-22, 7-20
address space through ASDES macro 8-12
data space 6-14

description 6-20
example 5-24, 6-21, 6-22
rules 6-3, 6-6

X-4 z/OS V1R3.0 MVS Extended Addressability Guide

delete (continued)
hiperspace

description 7-38
example 7-20, 7-44

DELETE parameter on ALESERV macro 5-14
deletion 9-18

of subspace 9-18
of subspace entry 9-18

diagnosis 9-23
of subspace errors 9-23

difference
between data spaces and hiperspaces 1-8

disability A-1
dispatchable unit access list

See DU-AL
displaying AR information 5-37
DIV macro

example 6-27, 7-43
mapping a data-in-virtual object to a hiperspace

example 7-41
mapping a hiperspace as a data-in-virtual object

example 7-43
use 1-5, 1-6, 6-26, 7-39

DREF parameter on DSPSERV macro 6-8
DREF storage in data space

defining 6-13
definition 6-13

DSPSERV macro
CREATE request

example 5-16, 5-33, 6-11, 6-13, 6-21, 6-25, 6-27,
6-32, 6-33, 7-10, 7-11, 7-12, 7-19, 7-22, 7-41,
7-43

example of use by SRB 6-32, 6-33
use 6-25

creating DREF storage 6-13
DELETE request

example 5-24, 6-20, 6-21, 6-22, 6-28, 6-33,
6-34, 7-20, 7-38, 7-42, 7-43

EXTEND request
example 6-20, 7-37

LOAD option
use 6-28

OUT option
use 6-28

RELEASE request
use 6-29, 7-38

DSPSTOR parameter on SNAPX macro 6-35
DU-AL 9-13

adding subspace entry 9-13
associated with asynchronous exit routine 5-35
characteristic 5-8
compared to PASN-AL 5-7, 5-9
containing subspaces 9-13

copying 9-13
definition 5-7, 6-2
description 5-8
illustration of a space switch 5-11
illustration of accessing data space 6-4
illustration of PASN-AL and DU-AL 5-10

DUMPOPX parameter on ABEND macro 6-35

E
EAEASWT ECB 8-5, 8-6
EAERIMWT ECB 8-5, 8-6
EAR instruction

description 5-6
EAX (extended authorization index)

associated with asynchronous exit routine 5-35
changing 5-31
compared with an AX 5-28, 5-29
definition 5-11, 5-26, 5-28
description 5-28
freeing 5-31
illustration 5-29
reserving 5-30
reuse of 3-40
unauthorized 5-26
with the value 0 5-26

EAX-authority
checked by system 5-15
checking 5-31
compared with SSAR authority 5-30
definition 5-11, 5-25
description 5-25
illustration 5-27
obtaining 5-25
procedures for obtaining 5-30
system checking for 5-27

EAX-checking
how to prevent it 5-26
how to request it 5-26

ECBs for initialization routine 8-5, 8-6
EKM (entry key mask) 3-1

purpose 3-10
relationship to PKM 3-10

entry table 3-1
connecting, example 3-23, 3-27
example 3-27
example of how to define 3-20
illustration 8-6
ownership 3-20
purpose 3-9
purpose of EX 3-10
structure 3-9

entry table index
See EX (entry table index)

EREG instruction
description 2-5
example 2-5

ESO hiperspace
backing 7-12
compared with standard hiperspace 7-5
creating 7-12
definition 7-4
description 7-5
example of creating 7-12
read and write operation 7-24
use 7-5

ESTA instruction
description 2-5
example 2-6, 2-7

Index X-5

establish
access for ARs 5-7
cross memory environment

through ASCRE macro 8-2, 8-6, 8-7
establish addressability

example 5-19
to a data space 5-19

definition 5-4, 6-2
example 6-14, 6-21
procedures 6-13
rules 6-4, 6-6

to an address space
definition 5-4

establish attributes for address spaces 8-11
ESTAE-type recovery routine

use of linkage stack 2-8
ET (entry table)

illustration 8-6
ETCON macro 3-1

example 3-23, 3-27
purpose 3-4
used to obtain EAX-authority 5-31

ETCRE macro 3-1
example 3-20, 3-27
purpose 3-4
used for obtaining EAX 5-30

ETDEF macro 3-1
example 3-20
purpose 3-4
used to change EAX 5-30

ETDES macro 3-1
example 3-26, 3-28
purpose 3-4

ETDIS macro 3-1
example 3-26
purpose 3-4

EX (entry table index) 3-1
purpose 3-10
responsibility for maintaining 3-10

example of moving data in and out of data space 6-15
examples of cross memory usage 3-18, 3-28

provide services to all address spaces 3-26
address space authorization 3-27
cleaning up 3-28
establishing access 3-27
granting PT authority 3-27
granting SSAR authority 3-27
providing service 3-28
removing access 3-28
setting up 3-26
system LX, obtaining 3-26

providing non-space switch service 3-28
providing services to selected address spaces 3-19

constructing a PC number 3-23
entry table create 3-20
establishing access 3-23
granting PT authority 3-23
granting SSAR authority 3-23
PC routine definition 3-20
removing access to PC routine 3-26
reserving an AX 3-19

examples of cross memory usage (continued)
providing services to selected address spaces

(continued)
reserving an EAX 3-19
reserving an LX 3-20

execution key mask
See EKM (entry key mask)

extend current size of data space
example 6-20
procedure 6-19
rules 6-4, 6-6

extend current size of hiperspace
example 7-37
procedure 7-37

EXTEND parameter on DSPSERV macro 6-19, 7-37
extended addressability

basic concepts 1-3
introduction 1-1

EXTRACT parameter on ALESERV macro 5-15

F
FAILDATA subcommand 9-24
formatting AR information 5-37
FPROT parameter on DSPSERV macro 6-8, 6-12, 7-7,

7-10
free

EAX value 5-31
full address space addressability 9-1

G
GENNAME parameter on DSPSERV macro 6-8, 6-9,

7-7, 7-8
glossary of terms C-1
GPR/AR

definition 5-2
illustration 5-2

guard area
changing its size 4-19

H
hiperspace 1-9

as data-in-virtual object 7-42
choosing the name 7-8
compared to address space 1-1
compared with data space 1-8
creating 7-1, 7-7
data manipulation 1-8
decision to use 1-6
definition 1-1, 7-1
deleting 7-38
deleting hiperspace from access list 7-20
description 1-6
efficient data transfer 7-25
example 1-10
example of creating 7-19
extending current size 7-37
identifying the origin 7-11
illustration 1-1

X-6 z/OS V1R3.0 MVS Extended Addressability Guide

hiperspace (continued)
managing storage 7-2
manipulating data

illustration 7-1
mapping data-in-virtual object into 1-6, 7-39, 7-41
obtaining an ALET 7-18
physical backing 1-9
problem state program using 7-13
protecting storage 7-10
PSW key 7-10
referencing data 7-20
releasing storage 7-38
requesting amount of storage 7-9
restoring after a checkpoint/restart operation 7-2
rules for problem state programs 7-13, 7-16
rules for supervisor state programs 7-16
saving before a checkpoint/restart operation 7-2
storage available 7-2
summary of rules 7-6
transferring data to and from address space 7-20
type 7-4
use by SRB 7-44
use of physical storage 1-9

hiperspace or data space
which one should you use 1-9

hiperspace storage
managing 7-2
physical backing 1-9
protecting 7-10
releasing 7-38
rules for releasing 7-38
serializing use 7-3

home address space
ALET for 5-12, 5-23

HSPALET parameter on HSPSERV macro 7-25
HSPSERV macro

compared to IOSADMF macro 7-25
CREAD and CWRITE operation

example 7-24
faster data transfer 7-25
read operation 7-20, 7-21, 7-22, 7-24
SREAD and SWRITE operation

example 7-22
illustration 7-21

write operation 7-20
HSTYPE parameter on DSPSERV macro 7-7

I
IARSUBSP macro 9-10

ASSIGN parameter 9-14
CREATE parameter 9-12
DELETE parameter 9-18
IDENTIFY parameter 9-10
RANGLIST parameter 9-10
UNASSIGN parameter 9-17
UNIDENTIFY parameter 9-18

IARV64 services 4-12
use 4-12

identify the origin of the data space 6-11

IEANTCR callable service
example of using 3-23

IEANTRT callable service
example of using 3-25

IEFUSI installation exit 6-15, 7-2
IEZEAECB mapping macro 8-2, 8-5
IHAASEO mapping macro 8-2
IHAETD mapping macro 3-21
information field in linkage stack entry

definition 2-6
illustration 2-6

initial size of data space 6-10
initial size of hiperspace 7-9
initialization routine for new address space 8-4

description 8-4
how to write 8-5
requirement 8-2
specifying 8-2

installation limit
amount of storage for data space and

hiperspace 6-10
on amount of storage for data space and

hiperspace 6-15, 7-2, 7-9
on size of data space 6-15
on size of hiperspace 7-9
on size of hiperspaces 7-2
size of data space 6-10

instructions used for cross memory 3-4
instructions used to manipulate linkage stack entry 2-5
IOSADMF macro

APURGE request 7-29
AREAD and AWRITE request 7-29
compared to HSPSERV macro 7-25
efficient data transfer 7-28
example of 7-29

IPCS (interactive problem control system)
format and display AR information 5-37

IPS settings of new address space 8-1

K
KEEP parameter on HSPSERV macro 7-24
KEY parameter on DSPSERV macro 6-8, 7-7, 7-10
keyboard A-1

L
LAE instruction

description 5-6
example 6-32, 6-33

LAM instruction
description 5-6
example 5-6, 5-16, 6-21, 7-19

limit use of data space 6-15
limit use of hiperspace 7-2
linkage conventions 4-10
linkage index

See LX (linkage index)
linkage stack 2-1

adding entry 2-3
advantages of using 1-4, 2-1

Index X-7

linkage stack (continued)
assembler instructions that manipulate entries 2-2
default number of entries 2-7
description 2-1
dumping the contents 2-8
example 2-4
expanding 2-7
format of information field 2-6
illustration 2-1
removing entry 2-3
use by ESTAE-type recovery routine 2-8
use by reentrant programs 2-1

linkage stack entry
assembler instructions that manipulate 2-2
contents 2-4

linkage stack instructions
using 2-5

linkage table 3-1
illustration 8-6
purpose 3-9
relationship to LX 3-9

LISTD parameter on SDUMPX macro 6-35
load instruction in AR mode

example 5-5
LSEXPAND macro

example 2-7
use 2-7

LX
reuse of 3-40

LX (linkage index) 3-1
owner 3-20
purpose 3-9
type 3-9

LXFRE macro 3-1
example 3-26
purpose 3-4

LXLIST parameter on ASCRE macro 8-8
LXRES macro 3-1

example 3-20, 3-27
purpose 3-4
used for obtaining EAX 5-31

M
macros 3-1

cross memory 3-1
requirements for issuing 3-15
summary 3-3

issuing in AR mode 5-35
passing parameters to in AR mode 5-37

manage data space storage 6-14
manipulate data in a data space 6-22
manipulate data in hiperspace 7-1
map data-in-virtual object into data space

rules for problem state programs 6-26
rules for supervisor state programs 6-27

map data-in-virtual object into hiperspace
example 7-41
rules for problem state programs 7-40
rules for supervisor state programs 7-40

map hiperspace as data-in-virtual object
example 7-43

mapping macros
IEZEAECB mapping macro 8-2, 8-5

maximum size of data space 6-10
maximum size of hiperspace 7-9
MEMLIMIT

definition 4-1
memory object

attributes 4-5
creating 4-13

example of 4-14
deleting a 4-18
discard pages that back pages 4-17
example of creating with a guard area 4-20
example of creating, using and freeing a 4-21
example of deleting a 4-19
fixing pages

example of 4-17
fixing the pages of 4-16
IARV64 list service 4-20
ownership 4-12
pagefix 4-5
releasing physical resources that back pages

of 4-18
user token 4-5

mode
AR 5-2
ASC mode 5-2
primary 5-2

modifiable area in linkage stack
changing 2-5

MSTA instruction
description 2-5, 2-7
example 2-7
use 2-7

MVC instruction
example in AR mode 5-5
example in primary mode 5-4

MVCP instruction
compared to MVC in AR mode 5-29

MVCS instruction
compared to MVC in AR mode 5-29

MVS macros
issuing in AR mode 5-35
passing parameters to in AR mode 5-37

N
name a data space 6-9
name a hiperspace 7-8
NAME parameter on DSPSERV macro 6-8, 6-9, 7-7,

7-8
name/token callable services

example of using 3-19
non-shared standard hiperspace

definition 7-5
non-space switch PC routine

definition 3-5
normal linkage stack

definition 2-2

X-8 z/OS V1R3.0 MVS Extended Addressability Guide

Notices B-1
NUMRANGE parameter on HSPSERV macro 7-21

O
obtain

ALET for the primary address space
illustration 5-23

EAX-authority 5-30
procedures for 5-30

storage in another address space 5-33
origin of data space 6-11
origin of hiperspace 7-11
ORIGIN parameter on DSPSERV macro 6-11, 7-11
OUTNAME parameter on DSPSERV 7-8
OUTNAME parameter on DSPSERV macro 6-8, 6-9
ownership of data space

assigning to another TCB 6-3
definition 6-2

ownership of hiperspace
assigning to a TCB 7-44
definition 7-3

P
page data space pages into central storage

rules 6-4
using DSPSERV LOAD and OUT 6-28

parameter
passing in AR mode 5-37

parameters
passing through ASCRE macro 8-10
passing to new address space 8-1
receiving through ASEXT macro 8-10

PASN-AL
associated with asynchronous exit routine 5-35
characteristic 5-8
compared to DU-AL 5-7, 5-9
definition 5-7, 6-2
description 5-8
illustration of a space switch 5-11
illustration of accessing data space 6-4
illustration of PASN-AL and DU-AL 5-10

pass ALET
to MVS macros

rules for 5-37
pass ALETs

across address spaces
illustration 5-21, 5-22
rules for 5-18

pass DU-AL to subtask 6-24
pass STOKENs to another program

illustration 5-22
passing ALETs

to other programs
rules for 5-18

PC linkage 3-1
overview 3-5
type 3-5

PC number 3-1
construction example 3-23

PC number (continued)
example of how to provide 3-19
how to construct 3-10
purpose 3-10

PC routine 3-1
accessing data 3-7
authorization for problem state routines 3-10
available to all address spaces 3-15

address space authorization 3-15
AX value used 3-15
basic PC routine linkage 3-16
entry table connect 3-16
entry table create 3-16
linkage index 3-16
macros used 3-15
PC routine 3-16
PT authority 3-15
SSAR authority 3-15

available to selected address spaces 3-16
address space authorization 3-17
authorization index 3-17, 3-18
AX value 3-17
entry table 3-17
linkage 3-18
linkage index 3-17
macros used 3-16
PC number 3-18
PC routine 3-17, 3-18
PT authority 3-17, 3-18
SSAR authority 3-17, 3-18
stacking AX value 3-18
stacking PC,address space authorization 3-18

basic 3-1
addressing mode 3-30
authorization for problem state programs 3-30
defined 3-5
defining 3-29
linkage capability 3-29
linkage conventions 3-33
non-space switch 3-30
PKM (PSW key mask) 3-30
problem state 3-30
requirements 3-32
space switch 3-30
supervisor state 3-30

comparison of linkage conventions 3-36
defining 3-29
definitions, common to basic and stacking 3-29
execution 3-5
IBM recommendation 3-29
invocation overview 3-5
invocation, example 3-24
linkage capability 3-29
linkage conventions 3-32

basic PC 3-33
stacking PC 3-34

loading recommendations 3-40
MVCP instruction, using 3-7
MVCS instruction, using 3-7
non-space switch, defined 3-5
overview 3-5

Index X-9

PC routine (continued)
recommendation for data access 3-1
requirements 3-32
space switch, defined 3-5
stacking 3-1

addressing mode 3-30
ARR (associated recovery routine) 3-32
ASC mode 3-31
authorization for problem state programs 3-30
defined 3-5
defining 3-29
EAX (extended authorization index) 3-31
linkage capability 3-29
non-space switch 3-30
PKM (PSW key mask) 3-30
problem state 3-30
PSW key 3-32
requirements 3-32
SASN value 3-31
space switch 3-30
supervisor state 3-30

use of access registers (ARs) 3-7
used in obtaining EAX-authority 5-30

PCLINK macro 3-1
compared with linkage stack function 2-1
purpose 3-4

physical storage
comparison of data space and hiperspace use 1-9

PKM (PSW key mask) 3-1
purpose with PC routine 3-10
relationship to AKM 3-10
relationship to EKM 3-10

PPT values of new address space 8-1
PR instruction

description 2-3
example 2-3
removing entry from linkage stack 2-3

primary address space
adding an entry to DU-AL 5-22
ALET for 5-12

primary mode
compared to AR mode 5-4
compared with AR mode 5-2
definition 5-2
description 1-4, 5-2
switching 5-3

private entry in access list
compared to public entry 5-27
definition 5-11, 5-26
illustration 5-27

problem state program
use of data spaces and hiperspaces 1-8

program note
for using SCOPE=COMMON data space 6-23

protect data space storage 6-12
protect hiperspace storage

illustration 7-11
protection 9-1

of data 9-1
in a subspace 9-1

PSW key
protecting data space storage 6-12
protecting hiperspace storage 7-10

PSW key mask
See PKM (PSW key mask)

PT authority
definition 3-6

public entry in access list
compared to private entry 5-27
definition 5-11, 5-26
illustration 5-27

R
range list 9-10

description 9-10
error 9-12, 9-15, 9-18, 9-19
illustration 9-11
requirements 9-11

ASSIGN request 9-14
IDENTIFY request 9-11
UNASSIGN request 9-14
UNIDENTIFY request 9-11

RANGLIST parameter on HSPSERV macro 7-21, 7-23
read from an ESO hiperspace 7-24
read operation

for ESO hiperspace 7-24
for standard hiperspace 7-20, 7-21, 7-22

recovery 9-21
in subspace 9-21

ESPIE routine 9-22
ESTAE-type routine 9-22
FRR 9-22
SPIE routine 9-22

recovery considerations for cross memory 3-41
recovery linkage stack

definition 2-2
reentrant programs use of linkage stack 2-1
relationship between data space and owner 6-2
relationship between linkage stack and ESTAE-type

recovery routine 2-8
release

data space storage 6-6, 6-14, 6-29
rules for 6-29

hiperspace storage 7-38
rules for 7-38

RELEASE parameter on HSPSERV macro 7-22
remove

entry from access list 5-24, 7-20
requirements

cross memory 3-14
reserve

EAX 5-30
resetting

subspace environment 9-23
resource management in a cross memory

environment 3-1
accounting considerations 3-41
PC routines 3-40

restarting
with subspaces 9-16

X-10 z/OS V1R3.0 MVS Extended Addressability Guide

restrictions
cross memory 3-14

RSMDATA subcommand 9-24
rules for

passing ALET
to MVS macros 5-37

passing ALETs 5-18
to other programs 5-18

running in subspace 9-1

S
SAC instruction

example 5-16, 5-33, 6-32, 6-33, 7-19
SAR instruction

description 5-6
example 5-33

SCOPE parameter on DSPSERV macro 6-3, 6-8
SCOPE=ALL data space

definition 6-3
illustration of accessing 6-4
use 6-3

SCOPE=COMMON data space
compared with CSA 6-22
creating and using 6-22
definition 6-3
illustration of using 6-23
use 6-3, 6-22

SCOPE=SINGLE data space
definition 6-3
illustration of accessing 6-4
use 6-3

SDUMPX macro used to dump data space
storage 6-35

SEARCH parameter on ALESERV macro 5-15
secondary address space

ALET for 5-12
serialize use

data space storage 6-15
hiperspace storage 7-3

set
ASC mode through SAC instruction 5-3

set up
addressability to a data space 5-7, 5-15, 5-19, 6-2

example 5-16
addressability to a hiperspace

example 7-19
addressability to a subspace 9-13
addressability to an address space 5-7, 5-15
cross memory environment in new address

space 8-9
set up EAX-authority to an address space 5-25
SETLOCK macro

example 6-32, 6-33
use 6-32, 6-33

SETRP macro
SSRESET parameter 9-23

share data spaces
between two address spaces 5-22

shared data space
between two problem state programs 6-24

shared standard hiperspace
definition 7-5

shortcut keys A-1
size of data space

specifying 6-9
size of hiperspace

specifying 7-9
SMF installation exit IEFUSI 6-15, 7-2
SNAPX macro used to dump data space storage 6-35
space switch PC routine

definition 3-5
space-switching PC instruction

affect on addressability through access lists 5-10
special ALETs

adding entry to the DU-AL 5-7
definition 5-12
illustration 5-12
passing to other programs 5-18

SRB (service request block) 6-32
example of using data space 6-33
use 1-3
use of data space 6-29
use of hiperspace 7-44

SSAR authority
compared with EAX-authority 5-30

SSRESET parameter
of SETRP macro 9-23

stacking PC 3-1
adding entry to linkage stack 2-2
available to all address spaces 3-15
available to selected address spaces 3-16
overview 3-5
PC routine execution 3-6

STAM instruction
description 5-6

standard hiperspace
compared with ESO hiperspace 7-5
creating 7-11
definition 7-4
description 7-4
example of creating 7-11
example of scrolling 7-4
examples of use by problem state programs 7-14
illustration of scrolling 7-4
read and write operation 7-21
use 7-4

START parameter on DSPSERV macro 6-29, 7-38
STOKEN

definition 6-2
returned by DSPSERV macro 6-2

STOKEN (space taken)
obtaining from DSPSERV 5-18
obtaining from other programs 5-18
passing to another program 5-18

STOKEN (space token)
compared with an ASID 5-7
definition 5-7
illustration of passing to another program 5-19
passing to another program 5-22

STOKEN parameter on ALESERV macro 5-15
STOKEN parameter on ASCRE macro 5-15

Index X-11

STOKEN parameter on DIV macro 6-26
STOKEN parameter on DSPSERV macro 5-15, 6-8,

7-7
STOKEN parameter on HSPSERV macro 7-21
storage 9-1, 9-8

alignment 9-9
for subspace 9-9

assigning to subspace 9-14
attributes 9-8

for subspace 9-8
backing 9-9

for subspace 9-9
eligible to be assigned to subspace 9-1
isolation 9-1

within address space 9-1
making eligible for subspace 9-10
managing data space 6-14, 6-17
managing hiperspace 7-2
obtaining 9-8

for subspace 9-8
obtaining storage in another address space 5-33
referenced by all subspaces 9-2
releasing after subspace 9-19
required by system

with subspaces 9-5
storage available for data space 6-15
storage available for hiperspace 7-2
STORAGE macro

OBTAIN request
example 5-33, 7-23

RELEASE request
example 5-33

use 5-33
subspace 9-1

assigning storage 9-14
benefits 9-4
creation 9-12
deletion 9-18
description 9-1
establishing addressability 9-13
identifying storage 9-10
limitations 9-5
making storage ineligible 9-18
obtaining storage 9-8
resetting 9-23
running 9-16
storage 9-8

attributes 9-8
system storage overhead 9-5
testing CVT 9-8
using MVS services 9-17

subspace-eligible storage 9-1
SUMLSTL parameter on SDUMPX macro 6-35
summary of cross memory communication 3-8
synchronous communication

definition 1-4
synchronous cross memory communication

See cross memory communication
SYSSTATE macro

example 5-33, 5-36
use 5-35

system linkage index 3-1
limitation 3-26
purpose 3-26
restriction 3-26
reusing 3-26
saving 3-27

T
TCBTOKEN macro

TYPE parameter 6-32
use 6-32, 6-33
using to find TTOKEN 6-32

terminating address space with ASDES macro 8-1
termination routine for new address space 8-10, 8-12
terminology C-1
TESTART macro

use 5-32
testing

for subspace 9-8
TKLIST parameter on ASCRE macro 8-8
TRMEXIT parameter on ASCRE macro 8-10
TTOKEN parameter on DSPSERV 6-33
TTOKEN parameter on DSPSERV macro 6-8, 6-31,

7-7, 7-44
example 6-32, 6-33
example of using data space 6-32

U
unmap a data-in-virtual object 6-28
use of the ALET for home address space

illustration 5-23
use the ALET for home address space

example 5-23
using a memory object

use the storage 4-14
UTOKEN parameter on ASCRE macro 8-11

V
VIO (virtual input/output)

comparison with data space and hiperspace 1-11
virtual storage

why use above the bar 4-2
use, example 4-2

VLF (virtual lookaside facility)
use 1-5

W
work unit

definition 5-7
relationship to access list 5-9

write operation
for ESO hiperspace 7-24
for standard hiperspace 7-20

write to a standard hiperspace 7-21
write to an ESO hiperspace 7-24

X-12 z/OS V1R3.0 MVS Extended Addressability Guide

X
X-macro

definition 5-36
rules for using 5-36

Z
z/Architecture

setting and checking the addressing mode 4-9
z/Architecture instructions

using the 64-bit GPR 4-7
z/Architecture processes S/390 instructions, how 4-6

examples 4-6

Index X-13

X-14 z/OS V1R3.0 MVS Extended Addressability Guide

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Programming: Extended
Addressability Guide

Publication No. SA22-7614-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7614-02

SA22-7614-02

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7614-02

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How This Book Is Organized
	How to Use This Book
	Where to Find More Information
	Accessing licensed books on the Web
	Using LookAt to look up message explanations

	Summary of changes
	Chapter 1. An Introduction to Extended Addressability
	Basic Concepts
	Asynchronous Cross Memory Communication
	Synchronous Cross Memory Communication
	Access Register ASC Mode
	Data-in-Virtual
	Virtual Lookaside Facility
	Data Spaces and Hiperspaces

	Basic Decision: Data Space or Hiperspace
	What Can a Program Do With a Data Space or a Hiperspace?
	What are the Differences?
	Comparing Data Space and Hiperspace Use of Physical Storage

	Which One Should Your Program Use?
	An Example of Using a Data Space
	An Example of Using a Hiperspace

	Choosing VIO Instead of a Data Space or a Hiperspace

	Chapter 2. Linkage Stack
	Linkage Stack Considerations for Asynchronous Exit Routines
	Instructions that Add and Remove a Linkage Stack Entry
	Branch and Stack (BAKR) Instruction
	Program Return (PR) Instruction
	Example of Using the Linkage Stack

	Contents of the Linkage Stack Entry
	Instructions that Manipulate the Contents of a Linkage Stack Entry
	Extract Stacked Registers (EREG) Instruction
	Extract Stacked State (ESTA) Instruction
	Modify Stacked State (MSTA) Instruction

	Expanding a Linkage Stack to a Specified Size
	Relationship Between the Linkage Stack and ESTAE-type Recovery Routines
	Dumping the Contents of the Linkage Stack

	Chapter 3. Synchronous Cross Memory Communication
	When Should You Use Synchronous Cross Memory Communication?
	Terminology, Macros, and Assembler Instructions
	Cross Memory Terminology
	Macros Used for Synchronous Cross Memory Communication
	Instructions Used for Cross Memory Communication

	An Overview of Cross Memory Communication
	PC Routines
	PC Routine Invocation
	PC Linkages
	PC Routine Execution
	Accessing Data from a PC Routine

	Summary of Cross Memory Communication

	The Cross Memory Environment
	Entry Tables
	Linkage Tables
	The PC Number
	Program Authorization - PKM (PSW Key Mask)
	Address Space Authorization

	Considerations Before Using Cross Memory
	Environmental Considerations
	Restrictions
	Requirements

	Establishing Cross Memory Communication
	Making a PC Routine Available to All Address Spaces
	Address Space Authorization
	Linkage Index
	PC Routines and the Entry Table
	Basic PC Routine Linkage

	Making a PC Routine Available to Selected Address Spaces
	Basic PC Routine
	Stacking PC Routine
	PC Number

	Examples of How to Establish a Cross Memory Environment
	Example 1 - Making Services Available to Selected Address Spaces
	Setting Up
	Establishing Access
	Invoking a PC Routine
	Removing Access
	Cleaning Up

	Example 2 - Making Services Available to All Address Spaces
	Setting Up
	Establishing Access
	Providing Service
	Removing Access
	Cleaning Up

	Example 3 - Providing Non-Space Switch Services

	PC Linkages and PC Routine Characteristics
	PC Linkage Capabilities
	Defining a PC Routine
	Definitions Common to Both Stacking and Basic PC Routines
	Definitions for Stacking PC Routines Only

	PC Routine Requirements
	Stacking PC Routines
	Basic PC Routines

	Linkage Conventions
	Basic PC
	Stacking PC

	Resource Management
	Reusing ASIDs
	Coding Cross Memory Services to Avoid the Loss of ASIDs from Reuse
	Using IEASYSxx to Avoid Running Out of ASIDs

	Reusing LXs
	Reusing AXs and EAXs
	PC Routine Loading Recommendations
	Accounting Considerations
	Recovery Considerations

	Chapter 4. Using the 64-bit Address Space
	What is the 64-bit Address Space?
	Why Would You Use Virtual Storage above the Bar?
	Limiting the Use of Memory Objects
	Memory Objects
	Using Assembler Instructions in the 64-bit Address Space
	64-bit Binary Operations
	How z/Architecture Processes S/390 Instructions
	z/Architecture Instructions that Use the 64-bit GPR

	64-bit Addressing Mode (AMODE)
	Non-Modal Instructions
	Modal Instructions
	Setting and Checking the Addressing Mode
	Linkage Conventions
	Pitfalls to Avoid

	IARV64 Services
	Protecting Storage above the Bar
	Relationship Between the Memory Object and Its Owner
	Creating Memory Objects
	Example of Creating a Memory Object

	Using a Memory Object

	Fixing the Pages of a Memory Object
	Example of Fixing Pages of a Memory Object

	Discarding Data in a Memory Object
	Releasing the Physical Resources that Back Pages of Memory Objects
	Freeing a Memory Object
	Example of Freeing a Memory Object

	Creating a Guard Area and Changing its Size
	Example of Creating a Memory Object with a Guard Area

	Listing Information About the Use of Virtual Storage Above the Bar
	An Example of Creating, Using, and Freeing a Memory Object

	Chapter 5. Using Access Registers
	Using Access Registers for Data Reference
	A Comparison of Data Reference in Primary and AR Mode
	Coding Instructions in AR Mode

	Manipulating the Contents of ARs
	Access Lists
	Types of Access Lists
	A Comparison of a PASN-AL and a DU-AL

	Types of Access List Entries

	Special ALET Values
	Special ALET Values at a Space Switch
	Loading the Value of Zero into an AR

	The ALESERV Macro
	Setting Up Addressability to an Address/Data Space
	Adding an Entry to an Access List
	Example of Adding an Access List Entry for a Data Space
	Example of Adding an Access List Entry for an Address Space
	Obtaining and Passing ALETs and STOKENs
	Rules for Passing ALETs

	Examples of Establishing Addressability to Data Spaces
	Adding an Entry for the Primary Address Space to the DU-AL
	Using the ALET for the Home Address Space

	Deleting an Entry from an Access List
	Example of Deleting a Data Space Entry from an Access List
	Example of Deleting an Address Space Entry from an Access List
	ALET Reuse by the System

	EAX-Authority to an Address Space
	Setting the EAX Value
	Procedures for Establishing Addressability to an Address Space
	Procedures for the Accessing Address Space
	Procedures for the Target Address Space

	Changing an EAX Value
	Freeing an EAX Value
	Checking the Authority of Callers
	Example of Using TESTART

	Obtaining Storage Outside the Primary Address Space
	What Access Lists Can an Asynchronous Exit Routine Use?
	Issuing MVS Macros in AR Mode
	Passing Parameters to MVS Macros in AR Mode

	Formatting and Displaying AR Information

	Chapter 6. Creating and Using Data Spaces
	Referencing Data in a Data Space
	Relationship Between the Data Space and its Owner
	SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces

	Rules for Creating, Deleting, and Using Data Spaces
	Example of the Rules for Accessing Data Spaces
	Summary of Rules for Creating, Deleting, and Using Data Spaces

	Creating a Data Space
	Choosing the Name of the Data Space
	Specifying the Size of the Data Space
	Identifying the Origin of the Data Space
	Example of Creating a Data Space
	Protecting Data Space Storage
	Creating a Data Space of DREF Storage

	Establishing Addressability to a Data Space
	Example of Establishing Addressability to a Data Space

	Managing Data Space Storage
	Managing Data Space Storage Across a Checkpoint/Restart Operation
	Limiting Data Space Use
	Serializing Use of Data Space Storage
	Examples of Moving Data into and out of a Data Space
	Using Callable Cell Pool Services to Manage Data Space Areas

	Extending the Current Size of a Data Space
	Deleting a Data Space
	Example of Creating, Using, and Deleting a Data Space
	Creating and Using SCOPE=COMMON Data Spaces
	Attaching a Subtask and Sharing Data Spaces with It
	Sharing Data Spaces among Problem State Programs with PSW Key 8 - F

	Mapping a Data-in-Virtual Object to a Data Space
	Paging Data Space Storage Areas into and out of Central Storage

	Releasing Data Space Storage
	How SRBs Use Data Spaces
	Obtaining the TCB Identifier for a Task (TTOKEN)
	Example of an SRB Routine Using a Data Space

	Dumping Storage in a Data Space
	Using Data Spaces Efficiently

	Chapter 7. Creating and Using Hiperspaces
	Managing Hiperspace Storage
	Limiting Hiperspace Use

	Managing Hiperspace Storage Across a Checkpoint/Restart Operation
	Relationship Between the Hiperspace and Its Owner
	Serializing Use of Hiperspace Storage
	Standard and Expanded Storage Only Hiperspaces
	Standard Hiperspaces
	Expanded Storage Only Hiperspaces
	Summary of the Differences

	Rules for Creating, Deleting, and Using Hiperspaces
	Creating a Hiperspace
	Choosing the Name of the Hiperspace
	Specifying the Size of the Hiperspace
	Protecting Hiperspace Storage
	Identifying the Origin of the Hiperspace
	Creating a Non-Shared or Shared Standard Hiperspace
	Creating an Expanded Storage Only Hiperspace

	Accessing Hiperspaces
	How Problem State Programs with PSW Key 8 - F Use Hiperspaces
	Summary of Unauthorized Programs' Use of Hiperspaces

	How Supervisor State or PSW Key 0 - 7 Programs Use Hiperspaces
	Obtaining an ALET for a Hiperspace
	Example of Adding an Access List Entry for a Hiperspace
	Obtaining and Passing ALETs for Hiperspaces
	Deleting an Access List Entry for a Hiperspace
	Example of Deleting a Hiperspace Entry from an Access List

	Transferring Data To and From Hiperspaces
	Read and Write Operations for Standard Hiperspaces
	Example of Creating a Standard Hiperspace and Using It

	Read and Write Operations For Expanded Storage Only Hiperspaces
	Obtaining Improved Data Transfer To and From a Hiperspace
	Using the Move-Page Facility
	Using the ADMF

	Extending the Current Size of a Hiperspace
	Deleting a Hiperspace
	Releasing Hiperspace Storage
	Using Data-in-Virtual with Standard Hiperspaces
	Mapping a Data-in-Virtual Object to a Hiperspace
	An Example of Mapping a Data-in-Virtual Object to a Hiperspace

	Using a Hiperspace as a Data-in-Virtual Object
	An Example of a Hiperspace as a Data-in-Virtual Object

	How SRBs Use Hiperspaces

	Chapter 8. Creating Address Spaces
	Using the ASCRE Macro to Create an Address Space
	Planning the Characteristics of the Address Space
	Identifying a Procedure in SYS1.PROCLIB
	The Address Space Initialization Routine
	Writing an Initialization Routine
	Synchronizing the Initialization Process

	Establishing Cross Memory Linkages
	The New Address Space as Service Provider
	The New Address Space as Cross Memory User

	Passing a Parameter List to the New Address Space
	Providing an Address Space Termination Routine
	Establishing Attributes for Address Spaces

	Deleting an Address Space
	Example of Creating and Deleting an Address Space

	Chapter 9. Creating and Using Subspaces
	What Is a Subspace?
	Deciding Whether Your Program Should Run in a Subspace
	Benefits of Subspaces
	Protecting the Server Program
	Protecting the Application Program
	Providing Diagnosis

	Limitations of Subspaces
	System Storage Requirements

	Steps to Manage Subspaces
	Updating the Application Server To Use Subspaces
	Managing Subspaces when Performance Is a Priority
	Managing Subspaces when Storage Is a Priority
	Creating a Single Subspace
	Determining Whether Subspaces Are Available on Your System
	Obtaining Storage for Subspaces
	Storage Attributes
	Requesting Subspace Storage

	Making a Range of Storage Eligible to Be Assigned to a Subspace
	Considerations When Making Storage Eligible to Be Assigned to a Subspace
	Coding the RANGLIST Parameter
	Requirements of the Range List for an IDENTIFY or UNIDENTIFY Request
	System Processing of Range List Errors in IARSUBSP IDENTIFY Request

	Creating the Subspaces
	Saving Subspace STOKENs

	Establishing Addressability to a Subspace
	Copying the DU-AL to a Subtask or SRB
	Searching For and Extracting a Subspace Entry
	Using Special ALETs

	Assigning Storage to the Subspaces
	Requirements of the Range List for an ASSIGN or UNASSIGN Request
	System Processing of Range List Errors in IARSUBSP ASSIGN Request

	Branching to a Subspace
	Using Cross Memory Mode with Subspaces

	Running a Program in a Subspace
	Returning to Full Address Space Addressability
	Preserving the Path Across Subspaces
	Using Checkpoint/Restart With Subspaces
	Requesting Additional Storage while Running in a Subspace
	Using MVS Services in a Subspace

	Disassociating Storage from the Subspaces
	System Processing of Range List Errors in IARSUBSP UNASSIGN Request

	Removing the Subspace Entry from the DU-AL
	Deleting the Subspace
	Making Storage Ineligible to Be Assigned to a Subspace
	System Processing of Range List Errors in IARSUBSP UNIDENTIFY Request

	Releasing Storage

	Example of Managing Subspaces
	Planning for Recovery in a Subspace Environment
	Planning for SPIE and ESPIE Routines
	Planning for ESTAE-Type Recovery Routines and FRRs
	Subspace Environment at Entry to Recovery Routines
	Resetting a Changed Subspace Environment after a Recovery Routine Error
	Passing Information to a Recovery Routine in a Subspace
	Subspace Environment On Entry to Retry Routine

	Diagnosing Errors in a Subspace Environment
	Diagnosing 0C4 ABENDs
	Using IPCS to Diagnose Program Errors in a Subspace
	RSM Component Trace
	Requesting a Dump

	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

